
1

Chapter 1

Object-Oriented
Concepts

A class consists of variables
called fields together with

functions called methods that
act on those fields.

Let’s look at the

String

class

An object is a variable whose
type is a class. An object has

the fields and can call the
methods of its class.

A String object is a variable
that contains a string

(a sequence of characters)
and can call methods
in the String class.

String s;
In this declaration, s is not a
String object, but rather a
String reference, that is,

a variable that can hold the address
of a String object.

2

To store the address of a String object in s,
we will:

1. Allocate space for a new String object.

2. Initialize the fields in that object.

3. Assign to s the address of that object.

s = new String();

A method with the same name as the class
is called a constructor.

The purpose of a constructor is to initialize
the object’s fields.

A class’s default constructor has no
parameters.

The String class’s default
constructor initializes the fields

so that the String object
represents an empty string.

Another constructor in the String class has
a String parameter. Here is the heading

parameter

public String (String original)

String t = new String (“Aloha”);

argument

is a reference to “Aloha”

Now the String objects referenced by s
and t can invoke String methods:

s.length() // returns 0

t.toLowerCase() // returns (a reference to)

// “aloha” . t is still a

// reference to “Aloha”

3

/**

* Returns the index within this String object

* of the first occurrence of the specified

* substring.

* @param str – the specified substring

* @return the index of the first occurrence

* of str in this String object, or –1

* if str is not a substring of this

* String object

* @throws NullPointerException – if str is

* null

*/

public int indexOf (String str)

The JAVADOC comments plus the method
heading constitute the method specification –
A user’s view of the method.

System.out.println (t.indexOf (“ha”));

System.out.println (t.indexOf (“a”));

System.out.println (s.indexOf (“ha”));

Hint: Indexes start at 0.

String w = null;

w does not contain the address
of any String object, so w
cannot call any methods.

The equals method tests for
equality of objects, and the

== operator tests for equality
of references.

String z = new String (“Aloha”);

s.equals (“”)

s == “”

t.equals (“Aloha”)

t == “Aloha”

t.equals (null)

t.equals (z)

t == z

w.equals (null)

w == null

4

String y1 = “Aloha”;

String y2 = “Aloha”;

These statements create two references, y1 and
y2, to the same string object, so

y1 == y2 // returns true

y1 == t // returns false

but

y1.equals (t) // returns true

So far, we have studied what a
class does, not how the class does
it.

That is, we have studied a class
from the user’s perspective
(method specifications) rather than
from a developer’s perspective
(fields and method definitions)

Principle of data abstraction:

A user’s code should not access
the implementation details

of the class used.

Many of the classes we will
study share the same

method specifications.

When we abstract these
specifications from the

classes we get an interface.
An interface consists of

method specifications and
constants only.

For example, here is an interface
for the employees in a company.

The information read in for
each employee consists of the

employee’s name and gross pay.

5

public interface Employee
{

/**
 * Determines if this Employee object’s gross pay
 * is greater than a specified employee’s gross pay.
 *
 * @param otherEmployee – the specified
* Employee object whose gross pay this
* Employee object’s gross pay is compared to.

 *
*/

 boolean makesMoreThan
 (Employee otherEmployee);

 /**
 * Returns a String representation of this
 * Employee object with the name followed by a
 * space followed by a dollar sign followed by the
 * gross weekly pay, with two fractional digits.
 *
 * @return a String representation of this
 * Employee object.
 *
 */
 String toString();

} // interface Employee

Note: Each method is
automatically public, and
each method heading is

followed by a semicolon.

To implement that
interface, we will create a
class with fields and, using

those fields, definitions of at
least the two methods.

import java.util.*; // for StringTokenizer class
import java.text.*; // for DecimalFormat class

public class FullTimeEmployee implements Employee
{

 private String name;

 private double grossPay;

6

 /**
 * Initializes this FullTimeEmployee object to have an
 * empty string for the name and 0.00 for the gross pay.
 *
 */
 public FullTimeEmployee()
 {
 final String EMPTY_STRING = "";

 name = EMPTY_STRING;
 grossPay = 0.00;
 } // default constructor

 /**
 * Initializes this FullTimeEmployee object’s name
 * and gross pay from a specified String object,
 * which consists of a name and gross pay, with at
 * least one blank in between.
 *
 * @param s – the String object from which this
 * FullTimeEmployee object is initialized.
 *
 */

 public FullTimeEmployee (String s)
 {
 StringTokenizer tokens = new StringTokenizer (s);
 name = tokens.nextToken();
 grossPay = Double.valueOf (tokens.nextToken ());
 } // constructor with String parameter

 /**
 * Determines if this Employee object’s gross pay
 * is greater than a specified Employee object’s
 * gross pay.
 *
 * @param otherEmployee – the specified
 * Employee object whose gross pay this
 * Employee object’s gross pay is compared to.
 *
 * @return true – if otherEmployee is a
 * FullTimeEmployee object, and this
 * if the calling object’s gross
 * pay is greater than otherEmployee’s gross pay.
 *
 *
 */

Note: The parameter type must be
Employee because that is the
parameter type in the interface.

public boolean makesMoreThan
(Employee otherEmployee)

{
if (!(otherEmployee instanceof FullTimeEmployee))

return false;
FullTimeEmployee full =

(FullTimeEmployee)otherEmployee;
return grossPay > full.grossPay;

} // method makesMoreThan

 /**
 * Returns a String representation of this Employee
 * object with the name followed by a space followed
 * by a dollar sign followed by the gross weekly pay,
 * with two fractional digits.
 *
 * @return a String representation of this
 * Employee object.
 *
 */

7

 public String toString()
 {
 final String DOLLAR_SIGN = " $";

 DecimalFormat d = new DecimalFormat ("0.00");

 return name + DOLLAR_SIGN +
 d.format (grossPay);

 } // method toString

} // class FullTimeEmployee

Suppose, in some other class, we have the
following:

FullTimeEmployee emp1 =
 new FullTimeEmployee (“a 1000.00”),
 emp2 =
 new FullTimeEmployee (“b 885.00”);

System.out.println (emp1.makesMoreThan (emp2));

What is compared here:

FullTimeEmployee full =
 (FullTimeEmployee)otherEmployee;
 return grossPay > full.grossPay;

In a method definition, when a
member (field or method)
appears without an object

reference, a reference to the
calling object is assumed.

Now suppose we want to find
the best-paid full-time

employee in a company. We
will create a Company class.

There are methods to initialize a
Company object, to find the
best-paid full-time employee,
and to print that employee’s

name and gross pay.

There are two fields:

bestPaid // to hold the best paid full-time employee

atLeastOneEmployee // in case there are no full-
 // time employees in the input

8

public class Company
{
 private FullTimeEmployee bestPaid;

 private boolean atLeastOneEmployee;

/**
 * Initializes this Company object.
 *
 */
 public Company()
 {
 bestPaid = new FullTimeEmployee();
 atLeastOneEmployee = false;
 } // default constructor

 /**
* Determines the best-paid full-time employee in
* this Company object.
*

 */
 public void findBestPaid () throws IOException
 {
 final String SENTINEL = "***";

 final String INPUT_PROMPT =

 "\nPlease enter a name (with no blanks) " +
 "and gross pay, followed by the Enter key. “ +
 “The sentinel is " + SENTINEL + “ “;

 FullTimeEmployee employee;

 String line;

 BufferedReader reader = new BufferedReader
(new InputStreamReader (System.in));

 while (true)
 {
 System.out.print (INPUT_PROMPT);
 line = reader.readLine();
 if (line.equals (SENTINEL))
 break;
 employee = new FullTimeEmployee (line);
 atLeastOneEmployee = true;
 if (employee.makesMoreThan (bestPaid))
 bestPaid = employee;
 }//while
 } // method findBestPaid

 /**
 * Prints out the best-paid full-time employee in the
 * input, or an error message if the only line of input
 * is the sentinel.
 *
 */
 public void printBestPaid()
 {
 final String NO_INPUT_MESSAGE =
 "\n\n\nERROR: there were no “ +
 “employees in the input.";

 final String BEST_PAID_MESSAGE =
 "\n\n\nThe best paid employee “ +
 “(and gross pay) is ";

 if (atLeastOneEmployee)
 System.out.println (BEST_PAID_MESSAGE +
 bestPaid);
 else
 System.out.println (NO_INPUT_MESSAGE);
 } // method printBestPaid

} // class Company

Finally, we need a main
method to get

everything started.

9

import java.io.*;

public class CompanyMain
{
 /**

* Finds and prints out the best-paid full-time
* employee in the input.

 *
 */
 public static void main (String[] args)
 throws IOException
 {
 Company company = new Company();

 company.findBestPaid();
 company.printBestPaid();
 } // method main

} // class CompanyMain

Exercise: Make up sample
input, and the

corresponding output.

Inheritance

Inheritance is the ability to
define a new class that

includes all the fields and
some or all of the methods of

an existing class.

SUPERCLASS

SUBCLASS

Existing class = superclass = base class
New class = subclass = derived class The subclass may declare new

fields and methods, and may
override existing methods
by giving them method
definitions that differ

from those in the superclass.

10

Example: Find the best-paid
hourly full-time
employee with no
overtime (40 hours)

Input: Name,
Hours worked,
Pay rate

Modify FullTimeEmployee class?

The Open-Closed Principle

Every class should be

Open: extendible through
inheritance

Closed: stable for existing
applications

Specifically, the FullTimeEmployee
class should be stable for the
existing application of finding the
best-paid employee in a company.

And extendible for this new
application!

public class HourlyEmployee
 extends FullTimeEmployee
{

Find best paid
employee project

Find best paid
hourly employee

project

FullTimeEmployee
Class

HourlyEmployee
Class

11

Overridden methods?

The declarations of name and
grossPay must be altered in
the FullTimeEmployee class:
those fields cannot be private.

Would it be a good idea to
make them public?

public class FullTimeEmployee
{

protected String name;

protected double grossPay;

A superclass member (field or method)
with protected visibility is accessible in
any subclass method as if the member
were declared in the subclass instead of in
the superclass.

For the sake of Subclasses of
HourlyEmployee:

protected int hoursWorked;

protected double payRate;

public class HourlyEmployee
 extends FullTimeEmployee
 implements Employee
{

 protected int hoursWorked;

 protected double payRate;

12

 /**
 * Initializes this HourlyEmployee object to have an

* empty string for the name, 0 for hours worked, 0.00
* for the pay rate and 0.00 for grossPay.

 *
 */
 public HourlyEmployee()
 {

 hoursWorked = 0;
 payRate = 0.00;

 } // default constructor

 /**
 * Initializes this HourlyEmployee object’s name
 * and gross pay from a a specified String object,
 * which consists of a name, hours worked and
 * pay rate, with at least one blank between each
 * of those three components.
 *

* @param s – the String object from which this
* HourlyEmployee object is initialized.

 *
 */

 public HourlyEmployee (String s)
 {

StringTokenizer tokens =
 new StringTokenizer (s);

name = tokens.nextToken();
hoursWorked =

Integer.parseInt (tokens.nextToken());
payRate = Double.parseDouble
 (tokens.nextToken());

grossPay = hoursWorked * payRate;

 } // constructor with string parameter

 /**
 * Determines if this HourlyEmployee object’s gross pay is
 * greater than a specified Employee object’s gross pay.
 * @param otherEmployee – the specified Employee object
 * whose gross pay this HourlyEmployee object’s gross
 * pay is compared to.

 * @return true – if this HourlyEmployee object did not work
 * any overtime, otherEmployee is a FullTimeEmployee
 * object, and this HourlyEmployee object’s gross pay
 * is greater than otherEmployee’s gross pay.
 * Otherwise, return false.

 */
 public boolean makesMoreThan (Employee otherEmployee)
 {
 final int MAX_NORMAL_HOURS = 40;
 return hoursWorked <= MAX_NORMAL_HOURS

&& super.makesMoreThan (otherEmployee);
 } // method makesMoreThan
} // class HourlyEmployee

For the project of finding the best-paid,
non-overtime hourly employee, we will need
HourlyCompany, a Subclass of Company.

import java.io.*;

public class HourlyCompany extends Company
{

 /**
 * Initializes this HourlyCompany object.
 *
 */
 public HourlyCompany()
 {
 }

13

 /**
* Determines the best-paid, non-overtime, full-time employee

 * in this HourlyCompany object.
 *

 */
 public void findBestPaid () throws IOException
 {
 final String SENTINEL = “***”;

 final String INPUT_PROMPT =
 "\n\nPlease enter a name, with no " +
 "blanks, hours worked and pay rate. The sentinel is “

 + SENTINEL + “ “;

 HourlyEmployee hourly;

 String line;

 BufferedReader reader = new BufferedReader
 (new InputStreamReader (System.in));

while (true)
 {
 System.out.print (INPUT_PROMPT);
 line = reader.readLine();
 if (line.equals (SENTINEL))
 break;
 hourly = new HourlyEmployee (line);
 if (hourly.makesMoreThan (bestPaid))
 {
 atLeastOneEmployee = true;
 bestPaid = hourly;
 } // if
 } // while
 } // findBestPaid

} // class HourlyCompany

bestPaid = hourly?

FullTimeEmployee bestPaid;

HourlyEmployee hourly;

Subclass Substitution Rule:

When a

Reference-To-Superclass-Object

is called for in an evaluated expression, a

Reference-To-Subclass-Object

may be substituted.

So

bestPaid = hourly;

is legal. But

hourly = bestPaid;

would be illegal because the variable on
the left-hand side of an assignment
statement is not evaluated.

14

It is also legal to have a SubClass
reference argument passed to a
SuperClass reference parameter.

Data Abstraction:

A user’s code should not access the
implementation details of the class used.

Burden on user;
Helps user

Information Hiding:

Making the implementation details of a
class inaccessible to user’s code.

Burden on developer;
Helps user

Encapsulation:

Grouping of fields and methods into a
single entity–the class–whose
implementation details are hidden from
users (for example, with the private
and protected visibility modifiers.

Object-Oriented Essentials:

1. Encapsulation

2. Inheritance

3. Polymorphism

Polymorphism is the ability of a reference
to refer to different objects.

Such a reference is called a Polymorphic
reference.

15

public class X
{

 public String whatIAm()
 {
 return “I’m an X.”;
 } // method whatIAm

} // class X

public class Y extends X
{

 public String whatIAm()
 {
 return “I’m a Y.”;
 } // method whatIAm

} // class Y

public static void main (String[] args)
 throws IOException
{
 X x; // x is of type reference-to-X

 BufferedReader reader = new BufferedReader
 (new InputStreamReader (System.in);

 if (reader.readLine().equals (“Go with X”))
 x = new X();
 else
 x = new Y();
 System.out.println (x.whatIAm());
} // method main

What is printed?

In other words, which version of the
whatIAm method is invoked?

When a message is sent, the version of the
method called depends on

The type of the object,

Not on the type of the reference.

How can the Java compiler decide which
version of the whatIAm method is to be
called?

16

The determination cannot be made at
compile time because the type of the object
(X or Y) is not available until run-time.

The “binding” of the method identifier to
the method definition must be made at run
time.

This is called

 Late binding

Dynamic binding

A virtual method is a method that is
bound to its method identifier at run-
time.

In Java, almost all methods are virtual.

The Unified Modeling Language

UML

A Class-Level Documentation Tool

 FullTimeEmployee

name: String
grossPay: int

+ FullTimeEmployee()
+ FullTimeEmployee (s: String)
+ makesMoreThan (otherEmployee: Employee): boolean
+ toString(): String

Inheritance: Solid arrow from
Subclass to Superclass

 FullTimeEmployee

 HourlyEmployee

17

Interface: Dashed arrow from Class
to Interface

 <<interface>>

Employee

 FullTimeEmployee

Association between classes: Solid
line

 1

 *

 Company

 FullTimeEmployee

Aggregation (an association in
which one class has a field whose
type is the other class): Solid line
with diamond

 ◊

 Company

 FullTimeEmployee

Exercise: Draw the UML diagram for the
best-paid hourly-employee project.
Include method headings (and fields) for
Company, HourlyCompany,
FullTimeEmployee, HourlyEmployee
and Employee.

