
1

Chapter 2

Additional Features 
of Java

The static modifier is applied to constant 
identifiers (always) and method identifiers 
(sometimes). 
 
 
Static means “applying to the class as a 
whole, rather than to an instance of the 
class.” 
 
 
 

For example, 
 

public static final int   MAX_VALUE = 0x7fffffff; 
 
= 231 - 1 
 
 
 

There is only one copy of   
 

MAX_VALUE instead of a separate  
copy for each instance of  Integer.   
final means “Can be assigned to only once.”

To access this constant, the class name is
followed by the member-designator
operator (the dot) followed by the
constant identifier:

if (size == Integer.MAX_VALUE)

public static int parseInt (String s)

returns the int value corresponding to the
digit characters that constitute s.

String line = reader.readLine();

int score = Integer.parseInt (line);

There is no calling object; the argument
has all the method needs.

Exception Handling



2

A robust program is one that does not 
terminate abnormally from invalid user 
input.

An exception is an object created by an 
unusual condition, such as an attempt at 
invalid processing

Try to execute a block of code: 
 
try  
{ 

… 
} // try 

 
Catch the exceptions thrown (one catch 
block per exception): 
 
catch (Exception e)  
{ 
   … 
} // catch 

public void processInput (String s)  
{ 

int score; 
 

  try  
  { 

    score = Integer.parseInt (s); 
    System.out.println (score * 2); 
} // try 
catch (NumberFormatException e)  
{ 
     System.out.println(e);//print  “NumberFormatException” 
                                       // + line#    
 } // catch 
System.out.println (“Continue here whether or not  “ + 
     “NumberFormatException was thrown”); 

} // method processInput 

Exercise: In the following method 
 

public void processInput (String s) { 
 
    … 
 
} // method processInput 
 

s is supposed to contain a last name followed 
by a blank followed by a first name. 

The output should be: 
 
The last name, if there is a last name, followed by a blank 
followed by the first three letters of the first time; 

 
NoSuchElementException message, if either name is missing; 

 
   StringIndexOutOfBoundsException  message, if the first name 

has fewer than three letters. 
 

Hint: in the String class,  
 

   public String substring (int start, int finish) 
 
   returns the substring from start to finish-1. 

public void processInput (String s)  
{ 
    try { 
      StringTokenizer st = new StringTokenizer (s); 
      String lastName = st.nextToken( ), 
               firstName = st.nextToken( );     

       System.out.println (…); 
  } // try 
    catch (…)  

{ 
  … 
    } //  
    catch (…)  

{ 
  … 
    } //  
}  method processInput 



3

Exceptions can be explicitly thrown: 
 
if (size == Integer.MAX_VALUE) 
    throw new ArithmeticException (“size too large”); 

If an exception is not caught when it is 
thrown, it is “propagated” back to the 
calling method. For example, suppose the 
input is “1Z”  
 

try 
{ 
 String s = reader.readLine(); 
 process (s); 
} // try 
catch (NumberFormatException e) 
{ 
 System.out.println (“oooops” + e); 
} // catch  

 
 
public void process (String s) 
{ 
 int age = Integer.parseInt (s); 
 … 
} // method process 
 

Run-time exceptions, such as
NumberFormatException and
NullPointerException, are automatically
propagated. Other exceptions, especially
IOException, are called checked
exceptions.  They can be propagated only
if a throws clause appears right after the
method heading.

public int findMedian (int [ ] a) throws IOException 
{ 

BufferedReader reader = new BufferedReader  
                     (new InputStreamReader (System.in)); 
       
System.out.println (reader.readLine()); 

 
 … 
 
Cultural note: It is considered bad form for the main 
method to throw any exception – because then the 
exception will not be caught by your program. 
 

File Output 
 
PrintWriter fileWriter = new PrintWriter   

(new BufferedWriter (new FileWriter ("maze.out"))); 
 
fileWriter.println (“Here is the grid:”); 
 



4

The output does not immediately go to the 
file, but is saved in a buffer – a temporary 
storage area in memory. Output is 
transferred from the buffer to the file when 
the buffer is full (and fileWriter.println is 
called) or when fileWriter.close() is called. 
 

The last method called by a file 
object should be close(). 

 

File input

BufferedReader  fileReader = new BufferedReader
         (new FileReader (fileName));

The file name is usually read in from the
keyboard.

What can go wrong? If fileName is not the 
name of a file, an IOException object will 
be thrown. But then another string should 
be read in from the keyboard and the 
statement from the previous slide should be 
repeated. 
 

boolean filesOK = false; 
while (!filesOK) 
{ 
 try   // to read the file name 
 { 
  // read in file name 
  while (true) 
  { 
   try // to read one line from the file 
   { 
    // read in and process one line 
   } 
   catch (//some RuntimeException) { … } 
 } // while true  
  filesOK = true;    
 } // try 
 catch (IOException e) { … } 
} // while !filesOK  
 

A method is correct if it satisfies its
specification.

Your confidence in the correctness of your
methods can be increased by testing, which
can reveal the presence but not absence of
errors.



5

For a single method, you can often easily 
create tests on the fly. For testing all of the 
methods in a class, a driver is used. 
 
 
A driver is a program created to 
systematically test a class’s methods in 
concert. 
  
 

The input for the tests comes from a file,  
so the input is not manually re-entered  
for each run of the driver. The input will 
not be in a fixed order, so the methods  
can be tested in concert: m1 followed  
by m2; m2 followed by m1, ….  Also,  
the output will go to a file. 
  
 

boolean filesOK = false; 
while (!filesOK) 
{ 
 try   // to read the file name 
 { 
  // read in file name 
  while (true) 
  { 
   try // to read one line from the file 
   { 
    // read in and process one line 
    testMethod (line); 
   } // inner try  
   catch (//some RuntimeException) { … } 
 } // while true  
  filesOK = true;    
 } // outer try 
 catch (IOException e) { … } 
} // while !filesOK  

The call testMethod(line) will tokenize  
line and send the appropriate message. 
For example, if line has 
 
e1 makesMoreThan e2 
 
Then testMethod will call 
 
fileWriter.println (e1.makesMoreThan (e2)); 
  
 

The Java Virtual Machine 
 
 

also known as 
 
 

the Java Run-Time Environment 
  
 

Java Source Code

Java Compiler

Bytecode

Java Virtual Machine

Machine Code



6

The Java virtual machine handles all run-
time aspects of your program. For example:
 

1. Pre-initialization of fields, just prior to  
a constructor call (so constant fields 
cannot be assigned a value after they are 
declared). This ensures that all fields get 
initialized. 

2.  Garbage collection: De-allocation of 
space for inaccessible objects 

 
 The virtual machine handles allocation 

by implementing the new Operator. 
 
 What about de-allocation? 
  

 Suppose we have a local variable 
  

double[] d = new double [100000]; 
 
at the end of the execution of the  
method, the space for the reference  
d is deallocated. But what about the  
space for the object  
 

(100000 doubles)? 

Space for that object can be deallocated 
provided there are no “live” references to 
the object. 
 
The Java virtual machine keeps track of 
the number of live references to an 
object. 
 

Visibility modifiers: 
 
1. public – accessible in any class 

 
2. protected – accessible in any class within the 

same package, or in any subclass 
 

3. default – accessible in any class within the same 
package 

 
4. private – accessible only within the class 

 

The Object class – the superclass of all 
classes – has an equals method: 
 
 
public boolean equals (Object obj) 
{ 
 return this == obj; 
} // method equals 
 
The pre-declared variable this references 
the calling object. 
 



7

Because this method compares references,
not objects, we should override the above
version for any class with an equals
method.

For example, let’s define an equals method 
for the FullTimeEmployee class: 
 
public boolean equals (Object obj) 
{ 
 // IF obj DOES NOT REFERENCE A  
 // FullTimeEmployee OBJECT 
 //          return false; 
 
 // return name equals (obj’s name) && 
 //            gpa == obj’s gpa; 
} // method equals 

public boolean equals (Object obj) 
{ 
         if (!(obj instanceof FullTimeEmployee)) 
             return false; 
         FullTimeEmployee full = (FullTimeEmployee)obj; 
         return name.equals (full.name) &&  

 grossPay == full.grossPay; 
} // method equals 

 

Exercise: Define an equals method in the 
HourlyEmployee class. Two 
HourlyEmployee objects are equal if they 
have the same name, hours worked and 
pay rate. 
 


