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Chapter 3

Analysis of Algorithms

Estimating the efficiency of a method
(so we can evaluate a method, or compare
two methods).

Independent of computer used; also
independent of Java restrictions such
as maximum int value (approximately
2 billion).

Execution-Time Requirements  
 
 

≈ Number of statements executed in a trace  
of the method, given as a function of n, the 
problem size.   

For example, you might read in an integer
and generate that many prime numbers.

Then n would represent the value read in.

You will either be given n explicitly, or n
will be clear from the context.

Given a problem of size n, a method’s 
worstTime(n) is the maximum number  
of statements executed in a trace of the 
method. 
 

Example: Assume a [0 … n –1] OF int. 
 
for (int i = 0; i < n - 1; i++) 
 if (a [i] > a [i + 1]) 
  System.out.println (i); 
 
 
What is worstTime(n)? 



2

The worstTime(n) IS 1 + n + (n – 1) +  
                                       (n – 1) + (n – 1) 
 
         = 4n - 2 

Similarly, a method’s averageTime(n) is the 
average number of statements executed  
in a trace of the method. 
 

Example:  
 
for (int i = 0; i < n - 1; i++) 
 if (a [i] > a [i + 1]) 
  System.out.println (i); 
 
 
What is averageTime(n)? 

The averageTime(n) iss 3.5n – 1.5. 

Maximum and average are over all
possible traces of the method, for all
possible field, parameter, and input values.

We want an upper bound estimate of
worstTime(n) and averageTime(n) to get
an idea of how bad the time can be.
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Definition of Big-O:

Let g be a function that has non-negative
integer arguments and returns a non-
negative value for all arguments.

We define O(g), the order of g,
To be the set of functions  f such that
for some pair of non-negative constants
C and K,

      f(n)  <= C  g(n)   for all n >= K

We say that f is O(g). 
 
 
“f is O of g” 

If f is O(g), f is eventually less than or
equal to some constant times g.  So g
can be viewed as an upper bound for f.

Notation: Suppose g is such that   
 
g(n) = n2, for n = 0, 1, 2, … 
 
 
we write O(n2) instead of O(g). 

Example: 
 
f(n) = (n2 + 3)(n – 5) + 20, for n = 0, 1, 2, … 
 
 
show that f is O(n3). 
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f(n) = n3 – 5n2 + 3n + 5 
 
 
Basic idea: Show that each term is <= some 
constant times n3 

n3 <= 1 n3, for all n >= 0

-5 n2 <= 5 n3 for all n >= 0 3n <= 3 n3 for all n >= 0

5 <= 5 n3 for all n >= 1 Adding up the left-hand sides and
the right-hand sides:
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n3 – 5 n2 + 3n + 5 <= 14 n3 for all n >= 1 
 
 
 

In other words, for C = 14 and K = 1,

f(n) <= C n3, for all n >= K

that is, f is O(n3).

The above f is also O(n4), O(n5), … 

 
 
Note that  
 
O(n3) = O(n3 – 5) = O(4n3 + 3) ⊂ O(n4) 
 

Often, the upper bounds will be from the 
following sequence of orders: 
 
 
O(1), O(log n), O(n), O(n log n), O(n2) 

Growth  Rates

O(n2)
O(n log n) O(n)

O(log n)

O(1)

n

worstTime(n)
O(2n)
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In the following examples, determine  
an upper bound, in Big-O notation, 
worstTime(n). 

Example 1. 
 
 
 
for (int j = 0; j < 10000; j++) 
     System.out.println (j); 

worstTime(n) is O(1)  
 
 
Because the number of loop iterations  
is independent of any n. 

Example 2. 
 
 
for (int j = 0; j < n; j++)     
          System.out.println (j); 

The number of statements executed  
is 3n + 2, so worstTime(n) IS O(n). 

In fact, we could arrive at the O(n) estimate 
without counting the number of statements 
executed. Because O(3n + 2) =  
O(7n – 4) = O(12n + 83) = O(n), all we need 
to count is the number of loop iterations! 
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Example 3: 
 
for (int j = 8; j < n – 3; j++)  
{ 
 System.out.println (j * j); 
 if (n / 2 > j) 
  System.out.println (j * n); 
} // for 

The number of statements executed is …   
who cares? 
 
The number of loop iterations is n – 11,  
so worstTime(n) is O(n). 
 
And the constant 11 is disregarded in  
the Big-O estimate, so all that matters is  
 

O(number of loop iterations). 

Example 4. 
 
 
for (int j = 0; j < n; j++) 
    for (int k = 0; k < n; k++) 
          System.out.println (j + “ “ + k); 
 
 
Hint: Calculate  
 

O(number of inner-loop iterations). 

# of inner-loop iterations = n2 
 
 
so worstTime(n) is O(n2). 

 

Example 5: 
 
 

while (n > 1)                          
n = n / 2; 

 
 
 
Starting at n, how many times can I divide 
by 2 until  n = 1? 

Simple case: n a power of  2 
 
For example, n = 32 
 
 
32 / 2 / 2 / 2 / 2 / 2 = 1 
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So when n = 32, the number of times  
to divide n by 2 (to get to 1) is 5. log2 32 = 5 

If n is a power of 2, the number of times  
to divide n by 2 until n = 1 is  
 
 

log2n 
 
 
 
 
 

If n is not necessarily a power of 2, some
divisions, such as 17 / 2, will reduce n by
slightly more than half, so the number of
halvings will be slightly less than log2n.

Specifically, for any positive integer n,  
the number of divisions by 2 to get from  
n to 1 is floor(log2n) – see example A2.2. 
 
 
Where floor(x) returns the largest integer 
<= x.  

1000

500

250

125

62

31

15

7

3

1

There are 9 divisions required;
floor(log21000) = 9
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The number of iterations of

while (n > 1)
n = n / 2;

is floor(log2n).

while (n > 1)
n = n / 2;

The worstTime(n) is O(log n), and
This is the smallest upper bound.

             The Splitting Rule: 
 
The number of halvings to get from n to 1  
is floor(log2n). 

The Splitting Rule is the basis for most
estimates that are O(log n).

By the base-conversion formula in 
Appendix 2,  
 
 
O(log2n) = O(ln n) = O (log3n) =  
O(log10n) = … 

Example 6.

while (n > 1)
n = n / 3;
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The worstTime(n) is floor(log3n).

so worstTime(n) is O(log n).

Exercise: Determine a Big-O 
estimate of worstTime(n) for the 
following fragment: 
 
 
 
 

while (n > 5)  
{ 
 System.out.println (n); 
 n = n / 12; 
} // while

Example 7. 
 
 
for (int j = 0; j < n; j++) 
 System.out.println (j * j); 
while (n > 1) 
   n /= 2;   // same as n = n / 2; 

The worstTime(n) is O(n).

In general, if worstTime(n) is O(g) for
one part of a method, and O(h) for
the rest of the method, worstTime(n)
is O(g + h) for the entire method.

Note that O(n + log n) = O(n).

Example 8. 
 
 
for (int j = 0; j < n; j++)  
{ 
 int temp = n; 
 while (temp > 1) 
  temp = temp / 2; 
} // for
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The worstTime(n) is O(n log n).

Example 9. 
 
 
for (int i = 0; i * i < n; i++) 
 System.out.println (i);  

The worstTime(n) is O(n1/2). Exercise: Provide a Big-O estimate of
worstTime(n):

  a.  for (int i = 0; Math.sqrt (i) < n; i++) 
   System.out.println (i); 
 
b. for (int i = 0; i < n; i++) 

System.out.println (i); 
while (n > 0) 

  { 
   n /= 2; 
   System.out.println (n); 
  } // while 
 

c.     int k = 1; 
 

for (int i = 0; i < n; i++) 
   k = k * 2; 

for (int j = 0; j < k; j++) 
   System.out.println (j); 

 

Big-O notation provides an upper bound
for a function. Sometimes, as in Chapter 11,
we will be interested in a lower bound.
Big-Omega notation provides a lower
bound.
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Let g be a function that has non-negative 
integer arguments and returns a non-
negative value for all arguments.  We 
define Ω (g) to be the set of functions f 
such that for some pair of non-negative 
constants C and K, 
 
         f(n)  >= C g(n)   for all n >= K. 

 
 
 

 
 
 
for (int j = 0; j < n; j++) 
 System.out.println (j); 
 
 
worstTime(n) is O(n), O(n log n), O(n2), … 
 
worstTime(n) is Ω (n), Ω (log n), Ω (1)  

Big-Theta provides both a lower and an 
upper bound. 
 
 
We say that f is Θ(g) if f is O(g) and  
f is Ω(g). 

for (int j = 0; j < n; j++) 
 System.out.println (j); 
 
 

worstTime(n) is Θ(n).  

If worstTime(n) is Θ (1), we will say   
 
“worstTime(n) is constant.”  

If worstTime(n) is _____, we will say  
 

“worstTime(n) is ______.” 
 
 
Θ(1) … constant 
 

Θ(log n) … logarithmic in n 
Θ(n) … linear in n 
Θ(n log n) … linear logarithmic in n 
Θ(n2) … quadratic in n 
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An Exponential-Time method is one  
whose  worstTime(n) is Ω(xn) for some  
real number x > 1.0.   
 
 
We then say that worstTime(n) is 
exponential in n.  

For example, 
 
int k = 1; 
 
for (int i = 0; i < n; i++) 
 k = k * 2; 
for (int j = 0; j < k; j++) 
 System.out.println (j); 
 
Then k = 2n, so worstTime(n) is  
 

exponential in n.  

Sometimes we provide Big-O but not  
Big-Theta (or plain English). For example, 
 
/**  
*  The specified array a has been sorted into ascending 
*  order. The worstTime(n) is O(n * n) and 
 *  averageTime(n) is O(n log n). 
 * 
 *  @param a – the array to be sorted. 
 *  
 */ 
public static sort (int[ ] a)  

An alternate implementation might do 
better: worstTime(n) might be O(n log n). 
 
 
 
 
 
 
 
 
 

The original implementation is very fast,  
on average, in execution speed.  

Method-Estimate Conventions: 
 

1. If the calling object is a collection of 
elements, n = number of elements  
in the collection. 

 
2. If no estimate of worstTime(n) given,  

worstTime(n) is constant.  
 

3. If no estimate of averageTime(n) given, 
O(averageTime(n)) = O(worstTime(n)).  

Run-Time Analysis
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To estimate a method’s run time, the 
System class has 
 
 

/**  
 *  Returns the number of milliseconds from 
 *  January 1, 1970 till now. 
 * 
 *  @return the number of milliseconds from 
 *  January 1, 1970 till now. 
 * 
 */ 
public static long currentTimeMillis( ) 

 
 
 
Here is the skeleton of a timing program: 

long startTime, 
        finishTime, 
        elapsedTime; 
 
startTime = System.currentTimeMillis( ); 
 
// Perform the task: 
… 
 
 

  // Calculate the elapsed time: 
finishTime = System.currentTimeMillis( ); 
elapsedTime = finishTime - startTime; 
 

In multiprogramming environments, such 
as Windows, elapsed time is a very crude 
estimate of run time. 
 
 
To see the current processes in Windows, 
CTRL-ALT-DEL. 

Randomness
Given a collection of numbers, a number is
selected randomly if each number has an
equal chance of being selected. A number
so selected is called a random number.



15

The method nextInt (int n) in the   
Random class returns a “Random”  
int in the range from 0 to n – 1. 
 

 
The value returned is not rally random: If 
you look at the method definition, you can 
calculate the return value. 

The value calculated by nextInt depends  
on the seed. seed is a long variable in the 
Random class  
 
 

Random random = new Random (100);   
   // initializes seed to 100 
 
Random random = new Random( );   
   // initializes seed to System.currentTimeMillis( )
 

The current value of seed determines
the next value of seed, and this is used
in calculating the value returned by
nextInt (int n).

Random r = new Random (100);
for (int i = 0; i < 10; i++)

System.out.print (r.nextInt (4) + " ");

Each time this segment is run in a particular
computing environment, the output will be
the same, for example:

2 2 0 2 2 0 3 1 2 2

Why would we want the same sequence every 
time? We can compare different methods 
with the same sequence of random values. 
 
 
In general, repeatability is a hallmark of the 
scientific method. 

 

Exercise: Write the code to print out how 
long it takes to generate the random 
integer 11111 if the initial seed is 100. 
 
Hint: while (…); 
 
Recall the timer skeleton: 
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long startTime,
        finishTime,
        elapsedTime;

startTime = System.currentTimeMillis( );

// Perform the task:
…

  // Calculate the elapsed time:
finishTime = System.currentTimeMillis( );
elapsedTime = finishTime - startTime;


