Chapter 3

Analysis of Algorithms

Execution-Time Requirements
\approx Number of statements executed in a trace
of the method, given as a function of n, the
problem size.

Estimating the efficiency of a method (so we can evaluate a method, or compare two methods).

Independent of computer used; also independent of Java restrictions such as maximum int value (approximately 2 billion).

For example, you might read in an integer and generate that many prime numbers.

Then n would represent the value read in.
You will either be given n explicitly, or n will be clear from the context.

Given a problem of size n, a method's worstTime(n) is the maximum number of statements executed in a trace of the method.

Example: Assume a $0 \ldots \mathrm{n}-1]$ OF int.

```
for(int i = 0; i < n - 1; i++)
```

 if (a \([i]>a[i+1]\))
 System.out.println (i);
 What is worstTime(n)?

The worstTime(n) IS $1+n+(n-1)$ +

$$
\begin{aligned}
& (n-1)+(n-1) \\
= & 4 n-2
\end{aligned}
$$

The averageTime(n) iss $3.5 n-1.5$.

We want an upper bound estimate of worstTime (n) and averageTime(n) to get an idea of how bad the time can be.

We define $O(g)$, the order of g,
To be the set of functions \boldsymbol{f} such that for some pair of non-negative constants C and K,

$$
f(n)<=C g(n) \text { for all } n>=K
$$

We say that f is $\mathbf{O}(g)$.
" f is \mathbf{O} of g "

Notation: Suppose g is such that
$g(n)=n^{2}$, for $n=0,1,2, \ldots$
we write $O\left(n^{2}\right)$ instead of $O(g)$.

If f is $O(g), f$ is eventually less than or equal to some constant times g. So g can be viewed as an upper bound for f.

Example:
$f(n)=\left(n^{2}+3\right)(n-5)+20$, for $n=0,1,2, \ldots$
show that f is $O\left(n^{3}\right)$.

$$
3 n<=3 n^{3} \text { for all } n>=0
$$

$$
5<=5 n^{3} \text { for all } n>=1
$$

Adding up the left-hand sides and the right-hand sides:

Note that

$$
O\left(n^{3}\right)=O\left(n^{3}-5\right)=O\left(4 n^{3}+3\right) \subset O\left(n^{4}\right)
$$

Example 1.
for (int $\mathrm{j}=0$; $\mathrm{j}<10000$; $\mathrm{j}++$)
System.out.println (j);
\square Example 2.

```
for (int j = 0; j < n; j++)
```

System.out.println (j);

In fact, we could arrive at the $\mathbf{O}(n)$ estimate without counting the number of statements executed. Because $\mathbf{O}(3 n+2)=$ $O(7 n-4)=O(12 n+83)=O(n)$, all we need to count is the number of loop iterations!

Example 3:

for (int $\mathrm{j}=8 ; \mathrm{j}<\mathrm{n}-3 ; \mathrm{j}+\mathrm{+}$)
\{
System.out.println (j * j);
if ($\mathrm{n} / 2>\mathrm{j}$)
System.out.println (j * n);
\}// for

Example 4.

for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}+\boldsymbol{+}$)
for (int $k=0 ; k<n ; k++$)
System.out.println (j + " " + k);

Hint: Calculate
O(number of inner-loop iterations).
\square

Example 5:

while ($\mathrm{n}>1$)
$\mathrm{n}=\mathrm{n} / 2$;

Starting at n, how many times can I divide by 2 until $n=1$?

The number of statements executed is ... who cares?

The number of loop iterations is $\mathbf{n} \mathbf{- 1 1}$, so worstTime (n) is $\mathbf{O}(n)$.

And the constant 11 is disregarded in the Big-O estimate, so all that matters is O(number of loop iterations).
$\#$ of inner-loop iterations $=\boldsymbol{n}^{\mathbf{2}}$
so worstTime (n) is $\mathbf{O}\left(n^{2}\right)$.

Simple case: \boldsymbol{n} a power of 2
For example, $n=32$
$32 / 2 / 2 / 2 / 2 / 2=1$

If \boldsymbol{n} is a power of 2 , the number of times to divide \boldsymbol{n} by $\mathbf{2}$ until $\boldsymbol{n}=\mathbf{1}$ is

$\log _{2} n$

$$
\log _{2} 32=5
$$

If \boldsymbol{n} is not necessarily a power of $\mathbf{2}$, some divisions, such as 17 / 2 , will reduce n by slightly more than half, so the number of halvings will be slightly less than $\log _{2} n$.

1000
500
250
125
62
31
15
7
3
1
There are 9 divisions required;
floor(log 1000$)=9$

The Splitting Rule:

The number of halvings to get from n to 1 is floor $\left(\log _{2} n\right)$.

The Splitting Rule is the basis for most estimates that are $O(\log n)$.

By the base-conversion formula in Appendix 2,

$$
\begin{aligned}
& O\left(\log _{2} n\right)=O(\ln n)=O\left(\log _{3} n\right)= \\
& O\left(\log _{10} n\right)=\ldots
\end{aligned}
$$

Example 6.
while ($n>1$) $\mathrm{n}=\mathrm{n} / 3$;

Exercise: Determine a Big-O estimate of worstTime(n) for the following fragment:
while $(n>5)$
\{
System.out.println (n);
$\mathrm{n}=\mathrm{n} / 12$;
\}// while

The worstTime (n) is $\mathbf{O}(n)$.

In general, if worstTime (n) is $\mathbf{O}(\mathrm{g})$ for one part of a method, and $O(h)$ for the rest of the method, worstTime (n) is $\mathbf{O}(\mathrm{g}+\mathrm{h})$ for the entire method.
Note that $\mathbf{O}(\mathrm{n}+\log \mathrm{n})=\mathbf{O}(\mathrm{n})$.

The worstTime (n) is $\mathbf{O}\left(n^{1 / 2}\right)$.
a. for (int $\mathrm{i}=0$; Math.sqrt (i) $<\mathrm{n}$; $\mathrm{i}++$)

System.out.println (i);
b. for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)

System.out.println (i);
while $(\mathrm{n}>0)$
\{
$\mathrm{n} /=2$;
System.out.println (n);
\} // while
c. int $\mathrm{k}=1$;
for (int $i=0 ; i<n ; i++)$
$\mathrm{k}=\mathrm{k}$ * 2 ;
for (int j $=0 ; j<k ; j++$)
System.out.println (j);

Let g be a function that has non-negative integer arguments and returns a nonnegative value for all arguments. We define $\Omega(g)$ to be the set of functions f such that for some pair of non-negative constants C and K,

$$
f(n)>=C g(n) \text { for all } n>=K .
$$

\square
Big-Theta provides both a lower and an upper bound.

We say that f is $\Theta(g)$ if f is $O(g)$ and f is $\Omega(\mathrm{g})$.

If worstTime(n) is Θ (1), we will say
"worstTime(n) is constant."

If worstTime (n) is \qquad , we will say
"worstTime(n) is \qquad ."
$\Theta(1)$... constant
$\Theta(\log n) . . . \operatorname{logarithmic}$ in n $\Theta(n)$... linear in n $\Theta(n \log n)$... linear logarithmic in n $\Theta\left(n^{2}\right) \ldots$ quadratic in n


```
Sometimes we provide Big-O but not
Big-Theta (or plain English). For example,
/**
* The specified array a has been sorted into ascending
* order. The worstTime(n) is O(n* n) and
* averageTime(n) is O(n log n).
* @param a - the array to be sorted.
*
*/
public static sort (int[ ] a)
```

An alternate implementation might do better: worstTime(n) might be $\mathbf{O}(n \log n)$.

The original implementation is very fast, on average, in execution speed.
For example,
int $\mathrm{k}=1$;
for ((int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}+$ +)
$\mathrm{k}=\mathrm{k}$ * 2;
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{k} ; \mathrm{j}+\mathrm{+}$)
System.out.printh (j);
Then $k=2^{n}$, so worstTime (n) is exponential in n . .

Method-Estimate Conventions:

1. If the calling object is a collection of elements, $\boldsymbol{n}=$ number of elements in the collection.
2. If no estimate of worstTime(n) given, worstTime (n) is constant.
3. If no estimate of averageTime (n) given, O(averageTime(n)) $=\mathbf{O}($ worstTime (n)).

To estimate a method's run time, the System class has
/**

* Returns the number of milliseconds from
* January 1, 1970 till now.
* @return the number of milliseconds from
* January 1, 1970 till now.
*

*/
public static long currentTimeMillis()

Here is the skeleton of a timing program:
long startTime, finishTime, elapsedTime;
startTime $=$ System.currentTimeMillis();
// Perform the task:
...
// Calculate the elapsed time:
finishTime $=$ System.currentTimeMillis();
elapsedTime $=$ finishTime - startTime;

Randomness

Given a collection of numbers, a number is selected randomly if each number has an equal chance of being selected. A number so selected is called a random number.
as Windows, elapsed time is a very crude estimate of run time.

To see the current processes in Windows, CTRL-ALT-DEL.
\square

The method nextlnt (int n) in the Random class returns a "Random" int in the range from 0 to $\mathrm{n}-1$.

The value returned is not rally random: If you look at the method definition, you can calculate the return value.

The value calculated by nextInt depends on the seed. seed is a long variable in the Random class

Random random = new Random (100);
// initializes seed to 100
Random random = new Random();
// initializes seed to System.currentTimeMillis()

Random r = new Random (100);
for (int $i=0 ; i<10 ; i++$)
System.out.print (r.nextInt (4) + " ");
Each time this segment is run in a particular computing environment, the output will be the same, for example:

2202203122

Why would we want the same sequence every time? We can compare different methods with the same sequence of random values.

In general, repeatability is a hallmark of the scientific method.

Exercise: Write the code to print out how long it takes to generate the random integer $\mathbf{1 1 1 1 1}$ if the initial seed is $\mathbf{1 0 0}$.

Hint: while (...);
Recall the timer skeleton:
long startTime,
finishTime,
elapsedTime;
startTime = System.currentTimeMillis();
// Perform the task:
// Calculate the elapsed time:
finishTime = System.currentTimeMillis();
elapsedTime $=$ finishTime - startTime;

