
1

 
Chapter 4

The Java Connections 
Framework

A collection is an object that is composed
of individual elements.

For example, an array is a collection.

 
double[ ] salaries = new double [1000]; 
 
 
 
 
 

The elements in the array object 
(referenced by) salaries are stored 
contiguously, so the kTH element  
is at index k. 

An array is a random-access storage
structure: Any element can be accessed
immediately from its index.

Drawbacks to an array: 
 

1. Once created, an array’s size is fixed. 
 
 Too big? Wasted space 
 
  Too small? 

For example, if salaries (1000 double 
values) is too small,  
 
 
double [ ] newSalaries = new double [2000]; 



2

Then

System.arraycopy (salaries, 0, newSalaries, 0, 1000);

Finally,

salaries = newSalaries;

At the end of the execution of this  
method, what happens to the reference 
newSalaries? 

 
The array object (of 1000 double values) 
that salaries formerly referenced? 
 
 

Drawbacks to an array:

2. Programmer must do all the work
to maintain and utilize the array.

For examples:

To insert an element at index 30, all
subsequent elements must be moved.

To print out all the elements, you must
keep track of how many there are
(not simply salaries.length).

Better than arrays: Instances of collection
classes

A collection class is a class whose instances
are collections.



3

The elements in a collection must  
be (references to) objects. 
 
Primitive types  (int, double, boolean, …) 
are not allowed, but wrapper classes can  
be used (Integer, Double, Boolean).  Or 
String or FullTimeEmployee, or …  . 

A contiguous-collection class stores  
the elements in an array field. 
 
 
Examples: ArrayCollection (Lab 6),    
                   ArrayList (Chapter 6), 
                   Heap (Chapter 14)  

Generics: The use of type parameters in 
the declaration of classes and interfaces. 
 
 
public class ArrayList<E>  
 
E (for “Element”) is a type parameter. 

When an instance of the ArrayList class
is declared (and constructed), a specific
type in angle brackets follows the class
identifier.

ArrayList <Double> salaryList = new ArrayList<Double>();

This creates an instance, salaryList, of the
ArrayList collection class. The elements in
salaryList must be of type (reference to)
Double.

What if salaryList needs to be expanded? 
Done automatically! 
 
 
 
 
 
 
 
 

What if you need to know the number  
of elements currently in salaryList?  
salaryList.size() 



4

What if you want to insert an element
at index 30?
salaryList.add (30, new Double (40000.00));

Even easier:
salaryList.add (30, 40000.00);

This is called boxing: The automatic
conversion of a primitive value to the
appropriate wrapper object.

There is also unboxing: The automatic
conversion of a wrapper object to the
appropriate primitive value.

double sum = 0;

sum = sum + salaryList.get (30);

This statement increases sum by the
underlying double of the Double
object at index 30 of salaryList.

Linked-collection classes provide a
widely used alternative to contiguous-
collection classes.



5

In a linked-collection class, each element 
is stored in an Entry object that also 
includes at least one reference to another 
Entry object. 

 
 
 
 
 

Missy Adeel Kazi 

The Java collections framework consists
of two hierarchies. In both of those
hierarchies, there is an interface at the top,
and fully defined classes at the bottom.

In between, there are abstract classes:
Classes that may have undefined methods
(like an interface) as well as defined
methods (like a regular class).

What does an abstract class provide 
that an interface does not? 
 
Simple definitions of methods that need 
not be overridden in the fully defined 
subclasses. 

For a simple example, 
 
public interface Collection<E> 
{ 
 public int size(); 
 
 public boolean isEmpty(); 
 
 … 
} // interface Collection<E> 
 
 
E is a type parameter. 



6

 
public abstract class AbstractCollection<E>  
                                         implements Collection<E> 
{ 
 public abstract int size(); 
 
 public boolean isEmpty() 
 { 
  return size() == 0; 
 } // method isEmpty 
 
 … 
} // abstract class AbstractCollection 
 
 

The benefit is that a subclass of
AbstractCollection need not
override isEmpty().

The Collection interface includes method
headings for inserting, removing and
searching for an element in a collection.

But what if the application entails accessing 
all of the elements in a collection? 
 
Print each employee whose gross pay  
is > $10,000. 
 
Remove each club member who has not 
paid dues this year. 
 
Determine each student’s grade point 
average. 

An iterator is an object that allows a user to
loop through a collection without accessing
the fields.

Associated with each class that implements
the Collection interface, there is an
iterator class that implements the
following interface:



7

public interface Iterator<E> 
{ 
 // Returns true if this Iterator object is positioned 

// at an element in the collection. 
 public boolean hasNext(); 
 
 // Returns the element this Iterator object is 
 // positioned at, and advances this Iterator object. 
 public E next(); 
 
 // Removes the element returned by the most 
 // recent call to next(). 
 public void remove(); 
} // interface Iterator 

And, to associated an iterator object with a
collection, use the following method from
the Collection interface:

// Returns an Iterator object to iterate over this collection.
Iterator<E> iterator();

For example, suppose we want to print
the highest salary in the ArrayList object
salaryList, created earlier:

ArrayList<Double> salaryList =
new ArrayList<Double>();

Iterator<Double> itr = salaryList.iterator(); 
 
double largest = -1.00; 
while (itr.hasNext()) 
{ 
  double current = itr.next(); 
  if (current > largest) 
   largest = current; 
} // while 
 
System.out.println (“The largest salary is “ + largest); 

In this example, and in most examples, all
we want to do is access the elements: There
are no calls to the remove() method.

For such situations, there is an enhanced
for statement.

double largest = -1.00; 
for (Double  current: salaryList)  
 if (current > largest) 
  largest = current; 
System.out.println (“The largest salary is “ + largest); 



8

Exercise: Replace the following with
enhanced for statements. The code prints
out the number of above-average salaries
in salaryList. Assume that salaryList
is non-empty.

double sum = 0.00; 
 
Iterator<Double> itr = salaryList.iterator(); 
while (itr.hasNext()) 
 sum += itr.next(); 
 
double average = sum / salaryList.size(); 
 
itr = salaryList.iterator(); 
int count = 0; 
while (itr.hasNext()) 

if (itr.next() > average) 
 count++; 
 

System.out.println (“The number of above-average “ + 
                               “salaries is “ + count); 

The Collection interface has method 
headings for inserting, removing and 
searching – and a few other methods: 
size(), isEmpty(), toArray(),  
 

… 
 
The List interface extends the Collection 
interface by including some index-oriented 
methods. 

public interface List<E> extends Collection<E> 
{ 
 // Returns the element at position index.  
 E get (int index); 
 
 // Replaces the element at position index with 
 // element, and returns the previous occupant. 
 E set (int index, E element); 
 
 // Inserts element at position index, and then 
 // all elements that were at positions >= index are 
 // at the next higher position. 
 void add (int index, E element); 
 
 // Removes the element at position index, returns 
 // the removed element, and then all elements that were  
 // at positions > index are at the next smaller position. 
 E remove (int index); 

 
 // Returns the index of the first occurrence of obj, or 
 // -1 if obj is not in this List object.  
 int indexOf (Object obj); 
 
 … 
} // interface List 
  
 
 
 
 

The framework has two implementations 
of the list interface: ArrayList and 
LinkedList. 

List<String> myList = new ArrayList<String>(); 
     
myList.add ("Chelebiev"); 
myList.add ("Culbertson"); 
myList.add ("Curry"); 
myList.add ("Dominguez"); 
myList.add ("Driscoll"); 
     
System.out.println (myList); 
System.out.println (myList.get (2)); 
myList.set (3, "Amanik"); 
myList.add (4, "Carson"); 
myList.remove (5); 
System.out.println ("Carson is at index " +  

myList.indexOf ("Carson")); 
for (String name: myList) 
      if (name.charAt (0) == 'C') 
          System.out.print (name + " "); 



9

List<String> myList = new LinkedList<String>(); 
     
myList.add ("Chelebiev"); 
myList.add ("Culbertson"); 
myList.add ("Curry"); 
myList.add ("Dominguez"); 
myList.add ("Driscoll"); 
     
System.out.println (myList); 
System.out.println (myList.get (2)); 
myList.set (3, "Amanik"); 
myList.add (4, "Carson"); 
myList.remove (5); 
System.out.println ("Carson is at index " +  

myList.indexOf ("Carson")); 
for (String name: myList) 
      if (name.charAt (0) == 'C') 
          System.out.print (name + " "); 

In general, an ArrayList object is faster
when the application frequently needs
to access the elements at specific indexes.

Why? Random-access of the underlying
array

A LinkedList object is faster when the application
entails iterating through the object and often
performing insertions or removals during the iteration.

Why? At a given index, an element can be inserted
or removed without moving any other elements.

The Set interface also extends the
Collection interface. But there are no
new methods! The only change is that
duplicates are not allowed in a Set object.

There are two implementations
of the Set interface:

TreeSet (Chapter 12)

HashSet (Chapter 14)

 
 
 
                                    
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         <interface>> 
 
           Collection 

E 

  <<interface>> 
 
           List

E

   AbstractList 
 E

ArrayList 
E

   <interface>> 
 
           Set 

AbstractSet 

LinkedList
E TreeSet HashSet E E

E 

E 



10

Set<FullTimeEmployee> employeeSet = 
 
     new TreeSet<FullTimeEmployee>(); 
 
employeeSet.add (new FullTimeEmployee (“Zheng 999”)); 
employeeSet.add (new FullTimeEmployee (“Wells 999”)); 
employeeSet.add (new FullTimeEmployee (“Zheng 999”)); 
employeeSet.add (new FullTimeEmployee (“Zheng 888”)); 
 
System.out.println (employeeSet.size()); 
 
(Assume the FullTimeEmployee class has the equals method 
based on name and  
gross pay.) 
 
 
 

When you use a TreeSet object, elements
can be inserted, in order, very quickly.
Removals and searches are also very fast:
worstTime(n) is logarithmic in n, as is
averageTime(n).

When you use a HashSet object, elements
can be inserted, not in order, but even
quicker, on average. For inserting,
removing and searching, averageTime(n)
is constant!!

But worstTime(n) is linear in n.

Finally, a map is a collection in which each
element has two parts: A unique key and
a value. The Map interface embodies this
concept.

 
 
 
                                    
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         <interface>> 
 
                Map 

K, V 

AbstractMap 

TreeMap HashMap 

K, V 

K, V K, V 

For example, a map of students: Each
student has a unique ID (the key), and
a name.



11

Map<String, String> students = 
     new TreeMap<String, String>(); 
 
students.put (“L12345678”, “Stofanak”); 
students.put (“L01234567”, “Strada”); 
 
 
The ordering is by keys, so the student 
with an ID of “L01234567” will come 
before the student with ID of 
“L12345678”.  
 

Exercise: Create a TreeMap
Object of taxpayers. Each key will be a
social security number, and each value
will be a FullTimeEmployee object.
Put two elements into the TreeMap
object.


