

Basically, a method is recursive if it includes a call to itself.

Consider recursion when

1. Simplest case(s) can be solved directly;
2. Complex cases can be solved in terms of simpler cases of the same form.

For $n>1$, we can calculate n ! in terms

 of $(n-1)$!$5!=5 * 4!$
$4!=4 * 3$!
$3!=3$ * 2 !
$2!=2$ * 1 !
$1!=1$ calculate directly

We can then work back up:

$$
\begin{aligned}
& 2!=2 * 1!=2 * 1=2 \\
& 3!=3 * 2!=3 * 2=6 \\
& 4!=4 * 3!=4 * 6=24 \\
& 5!=5 * 4!=5 * 24=120
\end{aligned}
$$

```
*
    * Returns the factorial of an integer. The worstTime(n)
    * is O(n).
    * @param n - the integer whose factorial is returned.
    * @return n!
    * @throws IllegalArgumentException - if n is less than 0.
    *
public static long factorial (int n)
    if (n<0)
        throw new IllegalArgumentException( );
        if (n<= 1)
            return 1;
    return n* factorial (n-1);
} // method factorial
```

Execution frames allow you to see what happens during the execution of a recursive method.

Each frame is a box with information (such as parameter values) related to one call to the method.

For example, here are the execution frames generated, step-by-step, after an initial call of factorial (3). At each step, the top frame pertains to the call being executed.

Step 0:

$n=3$
$\checkmark \quad$ return 3 * factorial(2);

Step 2:


```
n=3
```

 return 3 * factorial(2);

Step 4:

Analysis:

The key to estimating execution time and space of the factorial method is the number of recursive calls to factorial.

Number of recursive calls
$=$ Maximum height of execution
frames - 1
$=n-1$
so worstTime (n) is linear in n.

In general, worstTime(n) depends on only
two things:

1. The number of loop iterations as a function of \boldsymbol{n};
2. The number of recursive calls as a function of \boldsymbol{n}.
\square

In each call to factorial, some information must be saved (return address, value of n).

In other words, worstSpace (n) is linear in n.
averageTime(n)? averageSpace(n)?

```
/**
    * Returns the factorial of an integer. The worstTime(n)
    * is O(n).
    * @param n - the integer whose factorial is returned.
    * @return n!
    * @throws IllegalArgumentException - if n is less than 0.
*
*/
public static long factorial (int n) {
    int product = n;
        if (n<0)
        throw new IllegalArgumentException();
    if ( }\textrm{n}==0\mathrm{ )
        return 1;
        for (int i= n-1; i> 1; i--)
        product = product * i;
    return product;
    } // method factorial
```

The number of loop iterations is $\boldsymbol{n} \mathbf{- 1}$.
So worstTime (n) is linear in n.
\square
The number of variables used in any trace of this function is 3 .

So worstSpace (n) is constant.
To trace the execution of the recursive factorial function:
$\underline{\text { http://www.cs.lafayette.edu/~collinsw/factorial/factorialins.html }}$

Example 2: Converting from Decimal
to Binary

\square
For the binary equivalent of 34 :

The rightmost bit is $\mathbf{3 4 \% 2 = 0}$;

The other bits are the binary equivalent of $34 / 2$, which is 17 .

```
34%2=0 }\longrightarrow
34/2=17
17%2=1\longrightarrow1
17/2=8
8%2=0 }\longrightarrow
8/2=4
4%2=0}\longrightarrow
4/2=2
2%2=0}\longrightarrow
2/2=1 
```

Read bits from bottom to top:
100010

The rightmost bit is $\mathbf{1 7 \% 2 = 1}$;

The other bits are the binary equivalent of $17 / 2$, which is 8 .

For the binary equivalent of 17:

We need to calculate the binary equivalent of $n / 2$ before we append $n \% 2$. Otherwise, the string returned will be in reverse order.

Stop when $n=1$ or 0 , and return

* Returns a String representation of the binary
* equivalent of a specified integer. The worstTime(n)
* is $O(\log n)$.
* @param n - an int in decimal notation.
* @return the binary equivalent of n, as a String
* @throws IllegalArgumentException, if n is less than 0
*/
public static String getBinary (int n) \{
if $(\mathrm{n}<0)$
throw new IllegalArgumentException();
if $(\mathrm{n}<=1$)
return Integer.toString (n);
return getBinary ($\mathrm{n} / 2$) + Integer.toString ($\mathrm{n} \% \mathrm{2}$); \} // method getBinary

Analysis:

For $n>0$, the number of recursive calls is the number of times that n can be divided by 2 until $n=1$.

Exercise: Use execution frames to trace the execution of
getBinary (20);
recall that each time a recursive call is made, a new execution-frame box is "stacked" on top of the other executionframe boxes.

Because worstSpace(n) is proportional to the number of recursive calls, worstSpace(n) is logarthmic in n.
According to the analysis done in Chapter 3, that number is floor $\left(\log _{2} n\right)$.

So worstTime(n) is logarithmic in n.
\square

Given 3 poles ($\mathbf{A}, \mathrm{B}, \mathrm{C}$) and \boldsymbol{n} disks of increasing size ($1,2,3, \ldots, n$), move the \boldsymbol{n} disks from pole A to pole B.
Use pole C for temporary storage.

Instead of trying to figure out where to move disk 1, let's look at the picture just before disk 4 is moved:

Just before disk 4 is moved:

If $\boldsymbol{n}=\mathbf{1}$, move disk $\mathbf{1}$ from pole ' A ' to pole ' B '.
Otherwise,

1. Move $\boldsymbol{n}-1$ disks from ' A ' to ' C ', with ' B ' as a temporary.
2. Move disk \boldsymbol{n} from ' A ' to ' B '.
3. Move $\boldsymbol{n}-1$ disks from ' C ' to ' B ', with ' A ' as a temporary.

For the sake of generality, use variables instead of constants for the poles:
$\operatorname{orig}=' A$
dest $=' B$
temp $=' \mathbf{C}$,
Here is the strategy to move n disks from orig to dest:

If $\mathbf{n}=1$, move disk 1 from orig to dest.
Otherwise,
move n-1 disks from orig to temp.
Move disk n from orig to dest.
Move n-1 disks from temp to dest
/**

* Determines the steps needed to move disks from an origin to a destination. * The worstTime(n) is $\mathrm{O}\left(2^{\mathrm{n}}\right)$.
* @param n the number of disks to be moved.
* @param orig the pole where the disks are originally.
* @param dest the destination pole
* @param temp the pole used for temporary storage.
* @return a String representation of the moves needed
* @throws IllegalArgumentException if n is less than or equal to 0 */
public static String move (int n, char orig, char dest, char temp) \{ final String DIRECT_MOVE =
"Move disk " + n + " from " + orig + " to " + dest + "ln";

$$
\text { if }(\mathrm{n}<=0)
$$

throw new IllegalArgumentException(); if ($\mathrm{n}==1$)
return DIRECT_MOVE; return move ($\mathrm{n}-1$, orig, temp, dest) + DIRECT_MOVE +
move ($n-1$, temp, dest, orig) ;
\} // method move

There are n levels in this tree.
The number of calls to move at level 0 is $1=2^{0}$
The number of calls to move at level 1 is $2=2^{1}$
The number of calls to move at level 2 is $4=2^{2}$
\ldots
The number of calls to move at level $n-1$ is 2^{n-1}

The total number of calls to move is:

$$
\begin{array}{r}
n-2+4+\ldots+2^{n-1}=\sum 2^{i} \\
i=0
\end{array}
$$

\square This shows that worstTime (n) is $\mathbf{O}\left(2^{n}\right)$, and, because $2^{n}-1$ disks must be moved, worstTime (n) is $\Omega\left(2^{n}\right)$, that is, 2^{n} is also a lower bound. We conclude that worstTime (n) is $\theta\left(2^{n}\right)$.
See example 6 of Appendix 2 for a proof by mathematical induction.

Example 4:

Searching an Array

The int returned by

x.compareTo (y)
is $<\mathbf{0}$, if x is less than y ;
is $=0$, if x is equal to y;
is $>\mathbf{0}$, if x is greater than y .

```
/**
    * Determines whether an array contains an element equal
    * to a given key. The worstTime(n) is O(n).
*
* @param a the array to be searched.
    * @param key the element searched for in the array a.
    * @return the index of an element in a that is equal to key, if
    * such an element exists; otherwise, -1.
    * @throws ClassCastException, if the element class does
    * not implement the Comparable interface.
*/
public static int sequentialSearch (Object[ ] a, Object key) {
        for (int i = 0; i < a.length; i++)
            if ((Comparable) a [i].compareTo (key) == 0)
                return i;
    return -1;
} // sequentialSearch
```

We assume that the array elements are in a class that implements the Comparable interface:

```
public interface Comparable
```

\{
int compareTo(Object obj);
\}

Sequential search of an array for an element key:

Start at Index 0: Compare each element in the array to key until success (key found) or failure (end of array reached).

The worstTime (n) is linear in n.

The averageTime (n) is linear in n.

Binary Search:

During each iteration, the size of the subarray searched is divided by 2 until success or failure occurs.

Note: The array must be sorted!

/**

* Searches the specified array for the specified object using
* the binary search algorithm. The array must be sorted into
* ascending order according to the natural ordering of
* its elements prior to making this call. If it is not sorted,
* the results are undefined. If the array contains multiple
* elements equal to the specified object, there is no
* guarantee which one will be found. The worstTime(n) is
* O(log n).
* @param a - the array to be searched.
* @param first - smallest index in the region of the array now being searched
* @param last - the largest index in the region of the array
* now being searched.
* @param key the value to be searched for.

The basic idea:

Compare a [middle index] to key:
<0: Search a [middle index + $1 \ldots$ a.length -1$]$;
>0 : Search a $[0 \ldots$ middle index -1$]$;
= 0: Success!
> * @return index of the search key, if it is contained in the array;
> * otherwise, <tt>(-(<i>insertion point</i>)-1)</tt>. The
> * <i>insertion point<<i> is defined as the point at which the
> * key would be inserted into the array: the index of the first
> * element greater than the key, or <tt>a.length</tt>, if all
> * elements in the array are less than the specified key.
> * \quad Note that this guarantees that the return value will be
> * \>= 0 if and only if the key is found.
> * @throws ClassCastException if the array contains elements * that are not <i>mutually comparable (for example,
> * strings and integers), or the search key is not mutually
> * comparable with the elements of the array
> *
> public static int binarySearch (Object[] a, int first, int last,
> Object key)

```
a [0] Andrew
a [1] Brandon
a [2] Chris
a [3] Chuck
a [4] Geoff
a [5] Jason
a [6] Margaret
a [7] Mark
a [8] Matt
a [9] Rob
a [10] Samira
```

Search for "Matt", "Jeremy", "Amy", "Zach"

What if $\mathbf{6}$ is returned?

Suppose the array is:

```
a [0] Andrew
```

a [1] Brandon
a [2] Chris
a [3] Chuck
a [4] Geoff
a [5] Jason
a [6] Margaret
a [7] Mark
a [8] Matt
a [9] Rob
a [10] Samira

Search for "Mark".
public static int binarySearch(Object[] a, int first, int last,
\{
if (first <= last)
\{
int mid $=($ first + last $) / 2$;
Comparable midVal = (Comparable)a [mid]; int comp = midVal.compareTo (key); if (comp < 0)
return binarySearch (a , mid + 1, last, key); if (comp >0)
return binarySearch (a, first, mid - 1, key); return mid; // key found
\} // if first <= last
return-first - 1; // key not found; belongs at a [first] \} // method binarySearch

Analysis: Let $\boldsymbol{n}=$ size of initial region to be searched.

Unsuccessful search:

Keep dividing \boldsymbol{n} by $\mathbf{2}$ until $\boldsymbol{n}=\mathbf{0}$.

Successful Search

The average Time(n) is logarithmic in n. (See Concept Exercise 5.7.)

Exercise: Provide the successive values of first, middle (if calculated) and last if the above array a is searched for "Jeremy."

Strategy: Try to go west; if unable to go west, try to go south; if unable to go south, backtrack (until you can go south). Do not go to any position that has been shown not to lead to a goal. The goal is either G1 or G2. Start at P1.

We will solve this maze-search problem within the general framework of backtracking, which can easily be utilized in other applications.

When a position is visited, it is marked as (potentially) being on a path to the goal. If we discover otherwise, the marking must be undone, so that position will never again be visited. For example, $\mathbf{P 4}$ is not visited from P5.

The Application interface and the Backtrack class are the same for any backtracking project.
// Marks pos as not being on a path to a goal position. void markAsDeadEnd (Position pos);
// Returns a string representation of this Application. String toString();
// Returns an iterator over the positions directly // accessible from pos.
Iterator<Position> iterator (Position pos);
\} // interface Application

In any class that implements the Application interface, there will be an embedded iterator class with the usual methods: hasNext() and next().

The only field in the BackTrack class is app, OF TYPE Application.
The definition of the BackTrack class starts with:

Here are the method descriptions for the BackTrack class:
// Initializes this BackTrack object from app. public BackTrack (Application app)
// Returns true if a solution going through pos was // successful. public bool tryToReachGoal (Position pos)
import java.util.*;
public class BackTrack \{
Application app;
public BackTrack (Application app) \{
this.app = app;
\} // constructor

The tryToReachGoal method: First construct an iterator from pos of all positions immediately accessible from pos.

Then loop until success has been achieved or no more iterations are possible.

Each loop iteration considers several possibilities for the new position, pos,

Generated by the iterator:

1. pos a goal! Return true.
2. Might be on path to goal; then mark, and see if a goal can be reached from the current value of pos.
a. Yes? Return true;
b. No? Mark pos as dead end. Iterate again if hasNext(); return false if iterator at end.
```
public boolean tryToReachGoal (Position pos) {
    boolean success = false;
    Iterator<Position> itr = app.iterator (pos);
    while (!success && itr.hasNext()) {
        pos = itr.next();
            if (app.isOK (pos)) {
            app.markAsPossible (pos);
            if (app.isGoal (pos))
                success = true;
            else {
                success = tryToReachGoal (pos);
                if (!success)
                    app.markAsDeadEnd (pos);
            } // goal not yet reached
        } // a legal, not-dead-end position
    } // while
    return success;
} // method tryToReachGoal
```


A user supplies:

A specific application
What "position" means in the application
A way to iterate from a given position

Solution: $9=$ Path; $2=$ dead end
9990220002222
1099902222202
1000902020202
1000922020222
1111900001000
0000900000000
0000999999999

All that need to be developed are the Position class, the class that implements the Application interface and a tester.

For this application, a position is simply a row and column, so:
protected int row, column;
public Position (int row, int column)
\{
this.row = row;
this.column = column;
\} // two-parameter constructor
...

For this application, Maze.java implements the Application interface, with a grid to hold the maze.
public class Maze implements Application \{
protected final byte $W A L L=0$;
protected final byte CORRIDOR = 1;
protected final byte PATH = 9;
protected final byte DEAD_END = 2;
protected Position finish;
protected byte[][] grid; // "hard-wired" or read in
Here, for example, is the definition of the
public boolean isOK (Position pos)
\{
if (pos.getRow() >= 0 \&\&
pos.getRow() < grid.length \&\&
pos.getColumn() >= 0 \&\&
pos.getColumn() < grid [0].length \&\&
grid [pos.getRow()][pos.getColumn()] ==
CORRIDOR)
return true;
return false;
\} // method isOK

Finally, we define the Mazelterator class embedded in the Maze class.

```
// Postcondition: This Mazelterator object has been
// initialized from pos.
public Mazelterator (Position pos) {
    row = pos.getRow();
    column = pos.getColumn();
    count = 0;
} // constructor
// Postcondition: true has been returned if this
// Mazelterator object can still advance.
// Otherwise, false has been returned.
public boolean hasNext()
{
    return count < MAX_MOVES //= 4;
} // method hasNext
```

Exercise: Recall the solution when the order was north, east, south, west:

9990220002222
109990222202
1000902020202
1000922020222
1111900001000
0000900000000
0000999999999

The Mazelterator class has row and column fields to keep track of where the iterator is, and a count field to keep track of how many times the iterator has advanced (at most 3: north to east, east to south, and south to west).

```
// Precondition: count < MAX_MOVES (= 4).
// Postcondition: the choice for the next Position has
// been returned.
public Position next() {
    Position nextPosition = new Position();
    switch (count++) {
        case 0: nextPosition = new Position (row-1, column);
                break; // NORTH
            case 1: nextPosition = new Position (row, column+1);
                break; // EAST
            case 2: nextPosition = new Position (row+1, column);
                break; // SOUTH
            case 3: nextPosition = new Position (row, column-1);
                            // WEST
    } // switch;
    return nextPosition;
} // method next
```

Re-solve with the order north, east, west, south:

```
start\longrightarrow 1110110001111
    1011101111101
    1000101010101
    1000111010111
    1111100001000
    0000100000000
    00001111111111 «_ finish
```

Hint: Only one ' 1 ' remains.

The Cost of Recursion

Whenever a method is called, some information is saved to prevent its destruction in case the call is recursive. This information is called an activation record.

After the call has been completed, the previous activation record's information is restored and the execution of the calling method resumes. The saving and restoring of these records takes time.

Basically, an iterative method will be slightly faster than its recursive counterpart. But for problems such as backtracking and towers of Hanoi, the recursive methods take a lot less time to develop than the iterative versions!

