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Chapter 5

Recursion
Basically, a method is recursive
if it includes a call to itself.

if simplest case
Solve directly

else
Make a recursive call to a simpler case

Consider recursion when 
 
1. Simplest case(s) can be solved directly; 
2. Complex cases can be solved in terms  

of simpler cases of the same form.  

Example 1: Factorials

Given a non-negative integer n,  
 

n!, Read “n factorial”, is the product  
of all integers between n and 1, inclusive. 
 
3! = 3 * 2 * 1 = 6 
 
5! = 5 * 4 * 3 * 2 * 1 = 120 
 
1! = 1    
 
0! = 1   // by definition 
 



2

For n > 1, we can calculate n! in terms  
of (n – 1)!  
 
5! = 5 * 4! 
 

4! = 4 * 3! 
 

3! = 3 * 2! 
 

2! = 2 * 1! 
 

1! = 1                        calculate directly 
 

We can then work back up: 
 
 2! = 2 * 1! = 2 * 1 = 2 
 
 3! = 3 * 2! = 3 * 2 = 6 
 
 4! = 4 * 3! = 4 * 6 = 24 
 
 5! = 5 * 4! = 5 * 24 = 120 
 

/** 
*  Returns the factorial of an integer. The worstTime(n) 
*  is O(n). 
 * 
 *  @param n – the integer whose factorial is returned. 
 *  @return n! 
 *  @throws IllegalArgumentException – if n is less than 0. 
 * 
 */ 
public static long factorial (int n)  
{ 
       if (n < 0) 
              throw new IllegalArgumentException( );  
       if (n <= 1) 
              return 1; 
       return n * factorial (n - 1); 
} // method factorial 
 

Execution frames allow you to see what
happens during the execution of a recursive
method.

Each frame is a box with information
(such as parameter values) related to
one call to the method.

For example, here are the execution frames
generated, step-by-step, after an initial call
of factorial (3). At each step, the top frame
pertains to the call being executed.

Step 0:

n = 3

 return 3 * factorial(2);
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Step 1:

n = 2

 return 2 * factorial(1);

n = 3

 return 3 * factorial(2);

Step 2:

                                                           1
n = 2

 return 2 * factorial(1);

n = 3

 return 3 * factorial(2);

n = 1

 return 1;

Step 3:

                       2

n = 2

 return 2 * 1;

n = 3

 return 3 * factorial(2);

Step 4:

                       6

n = 3

 return 3 * 2;

Analysis: 
 
The key to estimating execution time and 
space of the factorial method is the number  
of recursive calls to factorial. 
 

Number of recursive calls  
 

= Maximum height of execution  
frames – 1 

 
                           = n – 1 
 

so worstTime(n) is linear in n.  
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In general, worstTime(n) depends on only
two things:

1. The number of loop iterations as a
function of n;

2. The number of recursive calls as a
function of n.

In each call to factorial, some information
must be saved (return address, value of n).

Because there are n – 1 recursive calls,  
the number of variables needed in any 
trace of this method is linear in n. 
 

 
 
In other words, worstSpace(n) is linear  
in n. 
 
 
averageTime(n)?  averageSpace(n)? 
 

Any problem that can be solved recursively 
can also be solved iteratively. 
 
An iterative method is one that has a loop 
statement. 

/** 
*  Returns the factorial of an integer. The worstTime(n) 
*  is O(n). 
 * 
 *  @param n – the integer whose factorial is returned. 
 *  @return n! 
 *  @throws IllegalArgumentException – if n is less than 0.
 * 
 */ 
public static long factorial (int n) { 
       int product = n; 
       if (n < 0) 
              throw new IllegalArgumentException( ); 
   if (n == 0) 
     return 1; 
       for (int i = n-1; i > 1; i--) 
             product = product * i;  
       return product; 
} // method factorial
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The number of loop iterations is n – 1. 
 

So worstTime(n) is linear in n.

The number of variables used in any trace
of this function is 3.

So worstSpace(n) is constant.

To trace the execution of the recursive
factorial function:

http://www.cs.lafayette.edu/~collinsw/factorial/factorialins.html

Example 2: Converting from Decimal  
to Binary 

The argument is a non-negative decimal 
integer. 
 
The return value is the binary 
representation of that integer.  
 
Run the following applet to see the user’s  
view: 
 
http://www.cs.lafayette.edu/~collinsw/writebinary/binary.html
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For the binary equivalent of 34:

The rightmost bit is 34 % 2 = 0;

The other bits are the binary equivalent
of 34 / 2, which is 17.

For the binary equivalent of 17:

The rightmost bit is 17 % 2 = 1;

The other bits are the binary equivalent
of 17 / 2, which is 8.

34 % 2 = 0                               0
34 / 2 = 17

17 % 2 = 1                               1
17 / 2 = 8

8 % 2 = 0                                  0
8 / 2 = 4

4 % 2 = 0                                  0
4 / 2 = 2

2 % 2 = 0                                  0
2 / 2 = 1                                     1

Read bits from bottom to top:
100010

We need to calculate the binary equivalent
of n / 2 before we append n % 2. Otherwise,
the string returned will be in reverse order.

Stop when n = 1 or 0, and return
n as a string.

/** 
 *  Returns a String representation of the binary  
 *  equivalent of a specified integer.  The worstTime(n) 
 *  is O(log n). 
 * 
 *  @param n – an int in decimal notation. 
 *  @return the binary equivalent of n, as a String 
 *  @throws IllegalArgumentException, if n is less than 0
 */ 
public static String getBinary (int n) {    
       if (n < 0) 
              throw new IllegalArgumentException( ); 
       if (n <= 1) 
              return Integer.toString (n);   
       return getBinary (n / 2) + Integer.toString (n % 2); 
} // method getBinary 
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Analysis:

For n > 0, the number of recursive calls is
the number of times that n can be divided
by 2 until n = 1.

According to the analysis done in Chapter 3,
that number is floor(log2 n).

So worstTime(n) is logarithmic in n.

WHAT ABOUT worstSpace(n)?
Because worstSpace(n) is proportional
to the number of recursive calls,
worstSpace(n) is logarthmic in n.

Exercise: Use execution frames to trace  
the execution of   
 
 getBinary (20);  
 
 

recall that each time a recursive call  
is made, a new execution-frame box is 
“stacked” on top of the other execution-
frame boxes. 

Example 3: Towers of Hanoi
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Given 3 poles (A, B, C) and n disks of 
increasing size (1, 2, 3, …, n), move  
the n disks from pole A to pole B.  
Use pole C for temporary storage. 

1. Only one disk may be moved at any time.
 
2. No disk may ever be placed on top of a 

smaller disk. 
 
3. Other than the prohibition of rule 2, the 

top disk on any pole may be moved to 
either of the other poles. 

Initially, with 4 disks:

    1
    2                                  
    3                                  
    4
                

    A            B              C

Instead of trying to figure out where  
to move disk 1, let’s look at the picture  
just before disk 4 is moved: 
 

Just before disk 4 is moved:                
      
                                           
                                            
                                                                                                               
                                                        1 
                                                     2
    4                                     3                                              

      A            B              C

So we will be able to move 4 disks from one 
pole to another if we are able to figure out 
how to move 3 disks from one pole to 
another (Aha!). 
 
 
To move 3 disks … 
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If n = 1, move disk 1 from pole ‘A’ to pole ‘B’.  
 
Otherwise, 
 
1. Move n – 1 disks from ‘A’ to ‘C’, with ‘B’  

as a temporary. 
 
2. Move disk n from ‘A’ to ‘B’. 
 
3. Move n – 1 disks from ‘C’ to ‘B’, with ‘A’  

as a temporary. 

For the sake of generality, use variables 
instead of constants for the poles: 
 
orig = ‘A’ 
dest = ‘B’ 
temp = ‘C’ 
 
Here is the strategy to move n disks from 
orig to dest:            

If n = 1, move disk 1 from orig to dest.  
 
Otherwise, 
 
move n-1 disks from orig to temp. 
 
Move disk n from orig to dest. 
 
Move n-1 disks from temp to dest 

/**
* Determines the steps needed to move disks from an origin to a destination.
* The worstTime(n) is O(2n).
* 
* @param n the number of disks to be moved.
* @param orig the pole where the disks are originally.
* @param dest the destination pole
* @param temp the pole used for temporary storage. 
* @return a String representation of the moves needed.
* @throws IllegalArgumentException if n is less than or equal to 0.
*/    

public static String move (int n, char orig, char dest, char temp) { 
final String DIRECT_MOVE = 

"Move disk " + n + " from " + orig + " to " + dest + "\n";
if (n <= 0)

throw new IllegalArgumentException( );
if (n == 1) 

return DIRECT_MOVE;
return move (n - 1, orig, temp, dest) + DIRECT_MOVE +

move (n - 1, temp, dest, orig) ;
} // method move

Analysis:

      worstTime(n) ≈ # of calls to move

                                        move (n, …)

            move (n-1, …)                         move (n-1, …)

move (n-2, …)  move (n-2, …)   move (n-2, …)  move (n-2, …)

   …       …           …          …         …          …         …         …

move (1, …)  move (1, …)   …
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There are n levels in this tree. 
 
The number of calls to move at level 0 is 1 = 20 

 

The number of calls to move at level 1 is 2 = 21 

 

The number of calls to move at level 2 is 4 = 22 

 

… 

 

The number of calls to move at level n-1 is 2n-1 

The total number of calls to move is:

n-1

1 + 2 + 4 + … + 2n-1 = Σ 2i

i=0

n-1

Σ 2i = 2n - 1

i=0

See example 6 of Appendix 2 for a proof 
by mathematical induction.

This shows that worstTime(n) is O(2n), 
and, because 2n - 1 disks must be moved, 
worstTime(n) is Ω(2n), that is, 2n is also 
a lower bound. We conclude that 
worstTime(n) is θ(2n).

To trace the execution of this 
recursive move function: 
http://www.cs.lafayette.edu/~collinsw/hanoi2/hanoiins.html

Exercise: Re-write the move method
to print out the steps needed to move
n disks. The heading is

public static void move (int n,
                                          char orig,
                                          char dest,
                       char temp)
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Example 4:

Searching an Array

We assume that the array elements are in
a class that implements the Comparable
interface:

public interface Comparable
{
 int compareTo(Object obj);
}

The int returned by  
 

x.compareTo (y) 
 
 
is < 0, if x is less than y; 
 
is = 0, if x is equal to y; 
 
is > 0, if x is greater than y. 

Sequential search of an array for an
element key:

Start at Index 0: Compare each element in
the array to key until success (key found)
or failure (end of array reached).

/** 
*  Determines whether an array contains an element equal 

 *  to a given key. The worstTime(n) is O(n). 
 * 
 * @param a the array to be searched. 
 * @param key the element searched for in the array a. 
 * @return the index of an element in a that is equal to key, if 
 *               such an element exists; otherwise, -1. 
 * @throws ClassCastException, if the element class does  
 *                 not implement the Comparable interface. 
 */ 
public static int sequentialSearch (Object[ ] a, Object key) {
    for (int i = 0; i < a.length; i++) 
           if ((Comparable) a [i].compareTo (key) == 0) 
                  return i; 
    return –1; 
} // sequentialSearch 

The worstTime(n) is linear in n.

The averageTime(n) is linear in n.
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Binary Search:  
 
 
During each iteration, the size of the 
subarray searched is divided by 2 until 
success or failure occurs. 
 

    
 
 

Note: The array must be sorted! 

The basic idea: 
 
Compare a [middle index] to key: 
 
 

< 0: Search a [middle index + 1 … a.length – 1]; 
 
 

> 0: Search a [0 … middle index – 1]; 
 
 

= 0: Success! 
 

    /** 
     * Searches the specified array for the specified object using 
     * the binary search algorithm.  The array must be sorted into
     * ascending order according to the natural ordering of  
     * its elements prior to making this call.  If it is not sorted, 
     * the results are undefined.  If the array contains multiple 
     * elements equal to the specified object, there is no  
     * guarantee which one will be found.  The worstTime(n) is  
     * O(log n). 
     * 
     * @param a - the array to be searched. 

* @param first - smallest index in the region of the array now
*                being searched   
* @param last - the largest index in the region of the array  

     *               now being searched.     
     * @param key the value to be searched for. 
 

 * @return index of the search key, if it is contained in the array;
 *        otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The 
 *        <i>insertion point</i> is defined as the point at which the 
 *        key would be inserted into the array: the index of the first 
 *        element greater than the key, or <tt>a.length</tt>, if all 
 *        elements in the array are less than the specified key.   
 *        Note that this guarantees that the return value will be  
 *        &gt;= 0 if and only if the key is found. 
 *      
 * @throws ClassCastException if the array contains elements  
 *      that are not <i>mutually comparable</i> (for example,  
 *         strings and integers), or the search key is not mutually  
 *         comparable with the elements of the array. 
 */      
public static int binarySearch (Object[ ] a, int first, int last,  
                                                    Object key) 
 
 

a [0]   Andrew 
a [1]   Brandon 
a [2]   Chris 
a [3]   Chuck 
a [4]   Geoff 
a [5]   Jason 
a [6]   Margaret 
a [7]   Mark 
a [8]   Matt 
a [9]   Rob 
a [10] Samira 
 
 
Search for “Matt”, “Jeremy”, “Amy”, “Zach” 

What if 6 is returned?
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What if  -6 is returned?
 

if (first <= last)  
{ 
  int mid = (first + last) / 2; 
     Comparable midVal = (Comparable)a [mid]; 
     int comp = midVal.compareTo (key); 
     if (comp < 0) 
      return binarySearch (a, mid + 1, last, key); 
     if (comp > 0) 
          return binarySearch (a, first, mid - 1, key); 
     return mid;  // key found 
} // if first <= last 

Suppose the array is: 
 
a [0]   Andrew 
a [1]   Brandon 
a [2]   Chris 
a [3]   Chuck 
a [4]   Geoff 
a [5]   Jason 
a [6]   Margaret 
a [7]   Mark 
a [8]   Matt 
a [9]   Rob 
a [10] Samira 

 

Search for “Mark”. 

 

Search for “Carlos”. 

public static int binarySearch(Object[ ] a, int first, int last,  
                                                  Object key)  
{ 
        if (first <= last)  

  { 
            int mid = (first + last) / 2; 
            Comparable midVal = (Comparable)a [mid]; 
            int comp = midVal.compareTo (key); 
            if (comp < 0) 
                return binarySearch (a, mid + 1, last, key); 
            if (comp > 0) 
                return binarySearch (a, first, mid - 1, key); 
            return mid;  // key found 
        } // if first <= last 
        return -first - 1; // key not found; belongs at a [first] 
} // method binarySearch 
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Binary Search Tester Applet: 
 
http://www.cs.lafayette.edu/~collinsw/binary/binaryins.html

Analysis: Let n = size of initial region
to be searched.

Unsuccessful search:
Keep dividing n by 2 until n = 0.

Unsuccessful Search

The number of divisions will be:

floor(log2n) + 1

Unsuccessful Search

So worstTime(n) is logarithmic in n.

Unsuccessful Search

The averageTime(n) is also logarithmic in
n because, for an unsuccessful search, the
algorithm terminates only when n = 0.

Successful Search:

Worst case: Keep dividing n by 2
until n = 1.  Then first = last = middle.
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Successful Search

The worstTime(n) is logarithmic in n.

Successful Search

The averageTime(n) is logarithmic in n.
(See Concept Exercise 5.7.)

See Lab 8 for an iterative version that is:

1. Slightly faster;
2. In the Java collections framework.

Exercise: Provide the successive values of 
first, middle (if calculated) and last if the   
above array a is searched for “Jeremy.” 

Example 5: 

Backtracking

Backtracking is the strategy of trying to 
reach a goal by a sequence of chosen 
positions, with re-tracing in reverse order 
of positions that cannot lead to the goal.
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Strategy: Try to go west; if unable to go west, try to go south; if 
unable to go south, backtrack (until you can go south).  Do not go 
to any position that has been shown not to lead to a goal. The goal 
is either G1 or G2. Start at P1.                  

P3              P2          P1

P4           P5

G2 P7           P6

G1

When a position is visited, it is marked as 
(potentially) being on a path to the goal. 
If we discover otherwise, the marking must 
be undone, so that position will never again 
be visited. For example, P4 is not visited 
from P5.

We will solve this maze-search problem 
within the general framework of 
backtracking, which can easily be 
utilized in other applications.

The Application interface and the Backtrack
class are the same for any backtracking 
project.

import java.util.*;

public interface Application {

// Returns true if it pos is a legal position and not a dead end.
boolean isOK (Position pos);

// Marks pos as possibly being on a path to a goal position.
void markAsPossible (Position pos);

// Returns true if pos is a goal position. 
boolean isGoal (Position pos);

// Marks pos as not being on a path to a goal position.
void markAsDeadEnd (Position pos);

// Returns a string representation of this Application.
String toString();

// Returns an iterator over the positions directly 
// accessible from pos.
Iterator<Position> iterator (Position pos);

} // interface Application
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In any class that implements the Application
interface, there will be an embedded iterator 
class with the usual methods: hasNext( ) 
and next( ).   

Here are the method descriptions for the
BackTrack class:

// Initializes this BackTrack object from app.
public BackTrack (Application app)

// Returns true if a solution going through pos was
// successful.
public bool tryToReachGoal (Position pos)

The only field in the BackTrack class  
is app, OF TYPE Application. 
 

The definition of the BackTrack class  
starts with: 

import java.util.*; 
  
public class BackTrack { 
  
    Application app; 
  
  
     
    public BackTrack (Application app) { 
  
        this.app = app; 
  
    } // constructor 
 
   

The tryToReachGoal method: First
construct an iterator from pos of all
positions immediately accessible from pos.

Then loop until success has been achieved
or no more iterations are possible.

Each loop iteration considers several possibilities for the 
new position, pos,  
 

Generated by the iterator: 
 

1. pos a goal!  Return true. 
 
2. Might be on path to goal; then mark, and see if a 

goal can be reached from the current value of pos. 
 

a. Yes?  Return true; 
 
b. No? Mark pos as dead end. Iterate again if 

hasNext(); return false if iterator at end. 
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public boolean tryToReachGoal (Position pos) { 
boolean success = false; 

      Iterator<Position> itr = app.iterator (pos); 
      while (!success && itr.hasNext()) { 
            pos = itr.next(); 
            if (app.isOK (pos)) { 
             app.markAsPossible (pos); 
             if (app.isGoal (pos)) 
                   success = true; 
             else { 
                   success = tryToReachGoal (pos); 
                   if (!success) 
                        app.markAsDeadEnd (pos); 
             } // goal not yet reached 
            } // a legal, not-dead-end position 
      } // while 
      return success; 
} // method tryToReachGoal 

A user supplies: 

 
A specific application 

 
 What “position” means in the application 
 
 A way to iterate from a given position 

Specific Application

Maze Searching

Maze searching: 1 = Corridor; 
0 = Wall

start 1 1 1 0 1 1 0 0 0 1 1 1 1
1 0 1 1 1 0 1 1 1 1 1 0 1
1 0 0 0 1 0 1 0 1 0 1 0 1
1 0 0 0 1 1 1 0 1 0 1 1 1
1 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1             finish

Iterator choices: north, east, south, west

Marked as possible = 9; dead end = 2

To watch a solution being created:

http://www.cs.lafayette.edu/~collinsw/maze/MazeApplet.html

To retrieve the project so you can run it:

http://www.cs.lafayette.edu/~collinsw/cs103/proj1/maze.html

Solution: 9 = Path; 2 = dead end

9 9 9 0 2 2 0 0 0 2 2 2 2
1 0 9 9 9 0 2 2 2 2 2 0 2
1 0 0 0 9 0 2 0 2 0 2 0 2
1 0 0 0 9 2 2 0 2 0 2 2 2
1 1 1 1 9 0 0 0 0 1 0 0 0
0 0 0 0 9 0 0 0 0 0 0 0 0
0 0 0 0 9 9 9 9 9 9 9 9 9
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All that need to be developed are the 
Position class, the class that implements 
the Application interface and a tester.

For this application, a position is simply 
a row and column, so:

protected int row, 
                      column; 
 
 
public Position (int row, int column)  
{ 
       this.row = row; 
       this.column = column; 
} // two-parameter constructor 
 
… 

The definitions of the Position methods
are straightforward. For example:

public int getRow( )
{
    return row;
} // method getRow( )

For this application, Maze.java implements
the Application interface, with a grid to hold
the maze.

public class Maze implements Application { 
  
     protected final byte WALL = 0; 
     protected final byte CORRIDOR = 1; 
     protected final byte PATH = 9; 
     protected final byte DEAD_END = 2; 
  
     protected Position finish; 
  
     protected byte[ ][ ] grid;     // “hard-wired” or read in 
  
  

Here, for example, is the definition of the 
method isOK: 

public boolean isOK (Position pos)  
{  
    if (pos.getRow() >= 0 &&  
         pos.getRow() < grid.length && 
         pos.getColumn() >= 0 &&  
         pos.getColumn() < grid [0].length && 
      grid [pos.getRow()][pos.getColumn()] == 
                                            CORRIDOR) 
         return true; 
   return false; 
 } // method isOK 
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Finally, we define the MazeIterator class
embedded in the Maze class.

The MazeIterator class has row and column
fields to keep track of where the iterator
is, and a count field to keep track of how
many times the iterator has advanced
(at most 3: north to east, east to south, and
south to west).

// Postcondition: This MazeIterator object has been  
//                         initialized from pos. 
public MazeIterator (Position pos) { 
   row = pos.getRow(); 
     column = pos.getColumn(); 
     count = 0; 
} // constructor 
 
 
// Postcondition: true has been returned if this  
//                        MazeIterator object can still advance. 
//                        Otherwise, false has been returned. 
public boolean hasNext()  
{ 
   return count < MAX_MOVES  // = 4; 
} // method hasNext 
 

// Precondition: count < MAX_MOVES (= 4). 
// Postcondition: the choice for the next Position has  
//                        been returned. 
public Position next() { 
     Position nextPosition = new Position(); 
     switch (count++) { 
       case 0: nextPosition = new Position (row-1, column); 
                        break;   // NORTH 

case 1: nextPosition = new Position (row, column+1);   
             break;   // EAST 

          case 2: nextPosition = new Position (row+1, column); 
                       break;   // SOUTH 
          case 3: nextPosition = new Position (row, column-1);  
         // WEST 
     } // switch; 
     return nextPosition; 
} // method next 

Exercise: Recall the solution when the order 
was north, east, south, west:

9 9 9 0 2 2 0 0 0 2 2 2 2
1 0 9 9 9 0 2 2 2 2 2 0 2
1 0 0 0 9 0 2 0 2 0 2 0 2
1 0 0 0 9 2 2 0 2 0 2 2 2
1 1 1 1 9 0 0 0 0 1 0 0 0
0 0 0 0 9 0 0 0 0 0 0 0 0
0 0 0 0 9 9 9 9 9 9 9 9 9

Re-solve with the order north, east, west, 
south:

start 1 1 1 0 1 1 0 0 0 1 1 1 1
1 0 1 1 1 0 1 1 1 1 1 0 1
1 0 0 0 1 0 1 0 1 0 1 0 1
1 0 0 0 1 1 1 0 1 0 1 1 1
1 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1             finish

Hint: Only one ‘1’ remains.
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The Cost of Recursion

Whenever a method is called, some
information is saved to prevent its
destruction in case the call is recursive.
This information is called an activation
record.

An activation record is an execution frame without the 
statements. Each activation record contains: 
 

1. The return address; 
 
2. A copy of each argument; 

 
 3. A copy of each of the method’s other local variables.
 
   

After the call has been completed, the  
previous activation record’s information  
is restored and the execution of the calling 
method resumes. The saving and restoring  
of these records takes time. 

Basically, an iterative method will be slightly
faster than its recursive counterpart. But for
problems such as backtracking and towers of
Hanoi, the recursive methods take a lot less
time to develop than the iterative versions!


