
1

Chapter 7

Linked Lists
A linked list is a List object (that is, an object
in a class that implements the List interface)
in which the following property is satisfied:

Each element is contained in an object,
called an Entry object, that also includes
a reference, called a link, to the Entry
object that holds the next element
in the list.

 Erik John Kazi

If each Entry object also includes a link to
the Entry object that holds the previous
element in the list, we have a doubly linked
list.

 Erik John Kazi

2

The beauty of a linked list is that
insertions and removals can be
made without moving any elements:
Only the links are altered.

 Erik Kazi

 Erik John Kazi

 John

We will devote most of this chapter to the
study of the LinkedList class, a doubly-
linked data structure that is part of the
Java collections framework. As a warm-up
to that class, we start with a toy class,
SinglyLinkedList.

The Entry class will be a nested class
within SinglyLinkedList:

protected class Entry<E>
{
 E element;
 Entry<E> next;
} // class Entry

Then methods in SinglyLinkedList
can access the Entry fields.

public class SinglyLinkedList<E>
 implements List<E>

 {

 // We’ll fill this part in shortly

protected class Entry<E>
{
 E element;
 Entry<E> next;
} // class Entry

} // class SinglyLinkedList

We will specify and define just enough
methods for you to get a feel for the
SinglyLinkedList class

3

/**
 * Initializes this SinglyLinkedList object to be empty,
 * with elements to be of type E.
 *
 */
public SinglyLinkedList()

/**
 * Determines if this SinglyLinkedList object has no
 * elements.

 * @return true – if this SinglyLinkedList object has
 * no elements; otherwise, false.
 *
 */
public boolean isEmpty ()

/**
 * Inserts a specified element at the front of this
 * SinglyLinkedList object.
 *
 * @param element – the element to be inserted (at
 * the front).
 *
 * @return true.
 *
 */
public boolean add (E element)

If true is always returned, why bother??

/**
* Determines the number of elements in this

 * SinglyLinkedList object.
* The worstTime(n) is O(n).

 *
 * @return the number of elements.
 *
 */
public int size ()

/**
* Determines if this SinglyLinkedList object contains
* a specified element. The worstTime(n) is O(n).

 *
 * @param obj – the specified element being sought.
 *
* @return true - if this SinglyLinkedList object

 * contains obj; otherwise, false.
 */
public boolean contains (Object obj)

Warning: Make sure the element class
implements an equals method.

SinglyLinkedList<String> linked =
new SinglyLinkedList<String>();

linked.add (“yes”);
linked.add (“no”);
if (linked.size() == 2)
 if (linked.contains (“maybe”))
 linked.add (“true”);
 else
 linked.add (“maybe”);

What does linked consist of now?

4

Fields and implementation of the
SinglyLinkedList class:

How can we indicate the end of a
SinglyLinkedList object?

How can we indicate the beginning
of a SinglyLinkedList object?

doe ray me

To indicate the end of a
SinglyLinkedList object, the
next field in the last Entry
should be null.

null

To indicate the beginning of a
SinglyLinkedList object, we
need a reference to the first Entry:

protected Entry<E> head;

doe ray me

head

null

public SinglyLinkedList()
{
 head == null;
} // default constructor

5

public boolean isEmpty()
{
 return head == null;
} // method isEmpty

For the add (E element) method,
let’s start with some examples:

SinglyLinkedList<String> myLinked =
new SinglyLinkedList<String> ();

myLinked.add (“me”);
myLinked.add (“ray”);
myLinked.add (“doe”);

raydoe me null

myLinked.
head

myLinked.add (“tea”); // Construct a new Entry:
Entry<E> newEntry = new Entry<E>();

6

raydoe me null

myLinked.
head

newEntry

null null
newEntry.element = element;

raydoe me null

myLinked.
head

newEntry

tea null
newEntry.next = head;

raydoe me null

myLinked.
head

newEntry

tea head = newEntry;

7

raydoe me null

myLinked.
head

newEntry

tea

Here is the complete definition of add:

public boolean add (E element)
{
 Entry<E> newEntry = new Entry<E>();
 newEntry.element = element;
 newEntry.next = head;
 head = newEntry;
 return true;
} // method add

public int size()
{

 ???

int count = 0;

Entry<E> current;

for loop:

Initialization:

current = head;

Continuation condition:

current != null

8

Incrementation:

current = current.next;

public int size()
{
 int count = 0;

 for (Entry<E> current = head; current != null;
 current = current.next)
 count++;
 return count;
} // method size

public boolean contains (Object obj)
{
 if (obj instanceof E)
 for (Entry<E> current = head; current != null;

 current = current.next)
 if (obj.equals (current.element))
 return true;
 return false;
} // method contains

The actual definition is slightly more
complicated because it is legal for an
element to be null.

If the element’s class does not implement
equals, there could be trouble. Why?

The Object class’s equals method tests
for equality of references, not objects!

Exercise:

Define the get method:

 /**
* Returns the element at a specified index.
* The worstTime(n) is O(n).

 *
 * @param index – the specified index.
 * @return – the element at index.
 * @throws IndexOutOfBoundsException – if index
 * is less than 0 or greater than size() – 1.
 *
 */

 public E get (int index)

Iterators

9

An iterator is an object that enables a user
to loop through a collection without
accessing the collection’s fields.

public class SinglyLinkedList<E> implements List<E>
 extends AbstractCollection<E>
{

 // We did this part earlier

protected class Entry<E>
{

 E element;
 Entry<E> next;

} // class Entry

protected class SinglyLinkedListIterator

implements Iterator<E>
{

 protected Entry<E> next;
 …
} // class SinglyLinkedListIterator

} // class SinglyLinkedList

public SinglyLinkedListIterator()
{
 next = head;
} // default constructor

public boolean hasNext()
{
 return next != null;
} // method hasNext

To motivate the definition of the next
method, consider the following example:

raydoe me null

head element next

next

10

raydoe me null

head element next

next

Returned: “ray”

So we need to save next.element,
advance next, and return the saved
element.

public E next()
{

E theElement = next.element;
 next = next.next; // ???
 return theElement;
} // method next

The next field in the
SinglyLinkedListIterator object
is a reference to an Entry object
that has a next field.

public E next()
{
 E theElement = next.element;
 next = next.next;
 return theElement;
} // method next

The next field in the
SinglyListIterator object is a reference
to an Entry object that has a next field.

Finally, we define an iterator method
in the SinglyLinkedList class:

/**
 * Returns a SinglyLinkedListIterator object to iterate
 * over this SinglyLinkedList object.
 *
 */
public Iterator<E> iterator()
{
 return new SinglyLinkedListIterator();

 } // method iterator

What is returned?

11

A reference to an object in the
SinglyLinkedListIterator class, which
implements the Iterator interface.

Example: Print each element of myLinked
whose value is greater than 5.0:

Iterator<Double> itr = myLinked.iterator();
while (itr.hasNext())
{
 double d = itr.next(); // unboxing
 if (d > 5.0)
 System.out.println (d);
}

Exercise: In the preceding example,
use an enhanced for statement instead
of an iterator.

Now, onto the class

LinkedList!

For the most part, the LinkedList class has
the same method headings as the ArrayList
class, but those classes have different time
estimates for some methods.

For example,

public E get (int index)

public E set (int index, E element)

worstTime(n) is linear in n

versus constant for an ArrayList.

12

Sometimes LinkedList versions are faster:

public boolean add (E element)

The worstTime(n) is constant, versus
linear in n for an ArrayList object
because of the possibility of re-sizing.

Basically, to get to a position in a LinkedList
takes linear-in-n time, but once you get
there, you can remove or insert in constant
time.

That magnifies the importance of iterators,
because once an iterator is positioned
somewhere in the collection, you can insert
or remove in constant time.

Here are the method headings for all
of the methods in the LinkedList class:

1. public LinkedList()
2. public LinkedList (Collection<? extends E> c)
3. public boolean add (E element)
4. public void add (int index, E element)
5. public void addAll (Collection<? extends E> c)
6. public boolean addAll (int index, Collection c)
7. public boolean addFirst (E element)
8. public boolean addLast (E element)
9. public void clear() // worstTime(n) is constant
10. public Object clone()
11. public boolean contains (Object obj)
12. public boolean containsAll (Collection<?> c)

13. public boolean equals (Object obj)
14. public E get (int index)
15. public E getFirst ()
16. public E getLast ()
17. public int hashCode()
18. public int indexOf (Object obj)
19. public boolean isEmpty()

 20. public Iterator<E> iterator()
21. public int lastIndexOf (Object obj)
22. public ListIterator<E> listIterator()
23. public ListIterator<E> listIterator (final int index)
24. public boolean remove (Object obj)

13

25. public E remove (int index)
26. public boolean removeAll (Collection<?> c)
27. public E removeFirst()
28. public E removeLast()
29. public boolean retainAll (Collection<?> c)
 30. public E set (int index, E element)
 31. public int size()
 32. public List<E> subList (int fromIndex, int toIndex)
 33. public Object[] toArray()
 34. public <T> T[] toArray (T[] a)
35. public String toString()

Example: Here is a processInput (String s) method
that starts by converting s to int n and then

0. Constructs a LinkedList of Double objects.

public LinkedList()
1. In a loop with i going from 0 to n – 1, appends new

Double (i) to the LinkedList.
public boolean add (E element)

2. Inserts new Double (1.4) at index n / 3.
public void add (int index, E element)

3. Removes the element at index 2n / 3.
public E remove (int index)

4. Multiplies the middle element by 3.5.
public E get (int index)
public E set (int index, E element)

5. Prints out the LinkedList; public String toString()

public void processInput (String s)
{
 int n = Integer.parseInt (s);
 List<Double> myList = new LinkedList<Double>();
 for (int i = 0; i < n; i++)
 myList.add (i + 0.0);
 myList.add (n / 3, 1.4);
 myList.remove (2 * n / 3);
 double d = (myList.get (n / 2)) * 3.5;
 myList.set (n / 2, d);
 System.out.println (myList) ;
} // method processInput

Does this look familiar?

The output, just as before, is

[0.0, 1.0, 2.0, 1.4, 3.0, 14.0, 6.0, 7.0, 8.0, 9.0]

Methods in the embedded ListItr class:
IT1. public void add (E element)
IT2. public boolean hasNext()
IT3. public boolean hasPrevious()
IT4. public E next()
IT5. public int nextIndex()
IT6. public E previous()
IT7. public int previousIndex()
IT8. public void remove()
IT9. public void set (E element)

For each method, worstTime (n) is constant!

In the LinkedList class:

/**
 * Returns a ListIterator object that is positioned
* at the beginning of this LinkedList.
*/

public ListIterator<E> listIterator()

/**
 * Returns a ListIterator object that is positioned at index
 * in this LinkedList, or beyond the last element if
* index = size(). The worstTime(n) is O(n).
*
* @throws IndexOutOfBoundsException – if index

 * is less than 0 or greater than size()
 *
 */
public ListIterator<E> listIterator (final int index)

14

In the ListItr class:

/**
* Retreats this ListIterator to the previous element,
* and returns that element.

 *
*@return the element that was at the index one less
* than where this ListIterator was positioned

 * when this call was made.
 *
* @throws NoSuchElementException – if this ListIterator
* was positioned at index 0 when this call

 * was made.
 */
public E previous()

LinkedList<String> myList = new LinkedList<String>();
myList.add (“Brian”);
myList.add (“Clayton”);
myList.add (“Eric”);

ListIterator<String> itr = myList.listIterator();
System.out.println (itr.next() + “ “ + itr.next() + “ “ +
 itr.previous());

Recall that the next() method returns the element where
the iterator is currently positioned, and advances to the
next position.

But the previous() method first retreats to the previous
position, and returns that element.

So the output is

Brian Clayton Clayton

To print myList in reverse order:

itr = myList.listIterator (myList.size());
while (itr.hasPrevious())

System.out.println (itr.previous());

Another ListIterator method:

/**
* Inserts an element into the LinkedList in front of
* the element that would be returned by next() and
* in back of the element that would be returned by
* previous().
*
*/
public void add (E element);

LinkedList<Double>myList = new LinkedList<Double>();

myList.add (0.0);

myList.add (1.0);

ListIterator<Double> itr = myList.listIterator();

itr.next();

itr.add (0.8);

15

The LinkedList would now have

0.0, 0.8, 1.0

Another ListIterator method:

/**

* Removes the last returned element.

*

*/

public void remove();

 List<String> myList = new LinkedList<String>();
 myList.add ("Kimotho");
 myList.add ("King");
 myList.add ("Kleinbach");
 myList.add ("Kolba");
 ListIterator<String> itr = myList.listIterator();
 itr.add ("zero-th");
 itr.next();
 itr.add ("second");
 itr.next();
 itr.remove();
 itr.previous();
 itr.remove();
 System.out.println (myList);

User’s guide for choosing ArrayList or
LinkedList:

If the application entails a lot of accessing and/or
modifying elements at widely varying indexes, an
ArrayList will be much faster than a LinkedList.

If a large part of the application consists of iterating
through a list and making insertions and/or removals
during the iterations, a LinkedList will be much faster
than an ArrayList.

Fields and implementation of the LinkedList
class:

There are two fields:

private transient int size = 0;

private transient Entry<E> header =
new Entry (null, null, null);

Fields and implementation of the LinkedList
class:

There are two fields

Field not saved if object
is serialized

private transient int size = 0;

private transient Entry header =
new Entry (null, null, null);

16

private static class Entry<E>
{
E element;
Entry<E> next;
Entry<E> previous;

Entry (<E> element, Entry<E> next, Entry<E> previous)
{

this.element = element;
this.next = next;
this.previous = previous;

} // constructor

} // class Entry

public LinkedList()
{

header.next = header.previous = header;
}

For example,

List<String> names = new LinkedList<String>();

Empty LinkedList LinkedList with on element

LinkedList with two elements
The significance of the header entry
is that there is always an entry in
back of an in front of any entry.

That simplifies insertions and removals.

17

Details of insertion into a LinkedList:

names.add (1, “Don”);

The method heading for this method is:
public void add (int index, E element)

This add method calls
addBefore (element, entry (index));

and the heading for addBefore is
private Entry<E> addBefore (E element, Entry<E> e)

So “Don” will be inserted in front
of the entry at index 1.

Start

Step 1: Code

// insert newEntry in front of e
Entry<E> newEntry =

new Entry(element, e, e.previous);

Step 1

Step 2:
// make newEntry follow its predecessor

newEntry.previous.next = newEntry;

18

Step 2

Step 3: Code

// make newEntry precede its successor, e
newEntry.next.previous = newEntry;

Step 3 The same strategy works for

names.add (0, “Kalena”);
// inserts between header entry and entry
at // index 0

names.add (names.size(), “Hana”);
// inserts between entry at index size() – 1
// and header entry

Group exercise:

Determine the output from the following:

LinkedList<String> myList = new LinkedList<String>();
myList.add ("a");
myList.add ("b");
myList.add ("c");
myList.add ("d");
myList.add ("e");
myList.add (2, "r");
myList.remove (4);
ListIterator<String> itr = myList.listIterator (3);
itr.previous();
itr.add ("x");
itr.next();
itr.remove();
itr = myList.listIterator (myList.size());
while (itr.hasPrevious())

System.out.println (itr.previous());

19

Application of

Linked Lists

A Line Editor

Line editor: A program that manipulates
test, line by line.

First line = line 0

One line is designated the current line.

Each editing command begins with $.

For now, there are only four editing
commands:

1. $Insert

Each subsequent line, up to the next editing
command, is inserted into the test in front
of the current line (at back of text if no
current line)

Example: Suppose the text is empty

$Insert
Mairzy Doats and Dozy Doats
And Liddle Lamzy Divy
A Kiddle Edivy Too, Wouldn’t You?

Now the text is:

Mairzy Doats and Dozy Doats
And Liddle Lamzy Divy
A Kiddle Edivy Too, Wouldn’t You?

>

Another example: Suppose the text is

In Xanadu did Kubla Khan
A stately pleasure dome decree,

> Down to a sunless sea.

$Insert
Where Alph the sacred river ran,
Through caverns measureless to man,

20

 Now the text is

 In Xanadu did Kubla Khan

A stately pleasure dome decree,
Where Alph the sacred river ran,
Through caverns measureless to
man,

> Down to a sunless sea.

2. $Delete m n

Each line in the text between lines m and n,
inclusive, will be deleted. The current line is
now just after the last line deleted.

Example: Suppose the text is

 I must go down to the sea again,
 To the lonely sea and the sky.
 And all I ask is a tall ship,
> And a star to steer her by.
 And the wheel’s kick and the wind’s song,
 And the white sails shaking,
 And a grey mist on the sea’s face,
 And a grey dawn breaking.

$Delete 2 4

Now the text is

 I must go down to the sea again,
 To the lonely sea and the sky.
> And the white sails shaking,
 And a grey mist on the sea’s face,
 And a grey dawn breaking.

Suppose the next command is

$Delete 3 3

 Now the text is

I must go down to the sea again,
To the lonely sea and the sky.
And the white sails shaking,

> And a grey dawn breaking.

21

Possible errors in the command line:

Error: The first line number is greater the
second.

 Error: The first line number is less than 0.

Error: The 2nd line number is greater
than the last line number.

Error: The command is not followed by
two integers.

3. $Line m

Line m becomes the current line
in the text.

Example: Suppose the text is

 I must go down to the sea again,
 To the lonely sea and the sky.
 And all I ask is a tall ship,
> And a star to steer her by.
 And the wheel’s kick and the wind’s song,
 And the white sails shaking,
 And a grey mist on the sea’s face,
 And a grey dawn breaking.

$Line 8

Now the text is

 I must go down to the sea again,
 To the lonely sea and the sky.
 And all I ask is a tall ship,
 And a star to steer her by.
 And the wheel’s kick and the wind’s song,
 And the white sails shaking,
 And a grey mist on the sea’s face,
 And a grey dawn breaking.
>

Possible errors in the command line?

4. $Done

The text is printed and the execution
of the editor is finished.

22

 Line Editor Applet

http://www.cs.lafayette.edu/~collinsw/lineeditor/line.html

For flexibility, we will separate editing from
input/output.

Then, for example, the input could come
from the keyboard, or from a file. And that
choice would not affect the editing.

So we will create two classes:

EditorDriver: To handle input
and output

Editor: To handle editing

Error message will be thrown as exceptions.
For example,

throw new RuntimeException (M_LESS_THAN_ZERO);

Error messages will be thrown in Editor
methods and caught in EditorDriver
methods.

For the Editor class, how do we start?

Fields or methods?

The chicken or the egg?

23

Proceed as follows:

Responsibilities of the class (what the class
will provide to users)

Method specifications

 Fields

Method definitions

Responsibilities:

--To determine whether the line contains a
legal command, an illegal command, or a
line of text

--To carry out each of the four commands

/**
* Interprets a given line, and the result of carrying out
* (if a command) or inserting that line has been returned.

 *
 * @param s – the line to be interpreted.
 * @return the result of carrying out or inserting s
 */
public String interpret (String s)

/**
 * Inserts a line into the text in front of the current line.
 *
* @param s – the line to be inserted.

 * @throws RuntimeException – if s has more than
 * MAX_LINE_LENGTH characters.
protected void insert (String s)

/**
 * Deletes lines, in a range specified by line numbers,
 * from the text.
 *
 * @param m – the first index in the range
 * @param n – the last index in the range
 * @throws RuntimeException – if m is less than 0 or
 * greater than n or if n is greater than or
* equal to the number of lines in the text.
*/

protected void delete (int m, int n)

/**
* Makes the line specified by an index the current line.
* @param m – the line number specified
* @throws RuntimeException – if m is less than 0 or

 * greater than the number of lines of text.
 */
protected void line (int m)

/**
 * Terminates the editor and returns the text.
 *
 * @return the text
 */
protected String done()

Fields?

24

protected LinkedList<String> text;

protected ListIterator<String> current;

protected boolean inserting;

public Editor()
{
 text = new LinkedList<String>();
 current = text.listIterator();
 inserting = false;
} // default constructor

public String interpret (String s)
{
 // If the line s doesn’t start with a $, insert the
 // line if inserting is true, and otherwise throw an
 // exception. If the line does start with a $,
 // perform the appropriate command, or throw
 // an exception if there is no such command.

 } // method interpret

To insert a line:

protected void insert (String s)
{
 if (s.length() > MAX_LINE_LENGTH)
 throw new RuntimeException (LINE_TOO_LONG +
 MAX_LINE_LENGTH);
 current.add (s);
} // insert

protected void tryToDelete (StringTokenizer tokens) {

// Try to tokenize m and n into integers: throw an
// exception if appropriate. Otherwise, delete lines m
// through n.

} // method tryToDelete

protected void delete (int m, int n)
{
 if (m > n)
 throw new RuntimeException (FIRST_GREATER);
 if (m < 0)
 throw new RuntimeException
 (FIRST_LESS_THAN_ZERO);
 if (n >= text.size())
 throw new RuntimeException
 (SECOND_TOO_LARGE);
 current = text.listIterator (m);
 for (int i = m; i <= n; i++)
 {
 current.next();
 current.remove ();
 } // for
} // method delete

25

The tryToSetLine and line methods
are similar to, but simpler than, the
tryToDelete and delete methods.
For example, here is the line method:

protected void line (int m)
{

if (m < 0)
throw new RuntimeException

(M_LESS_THAN_ZERO);
if (m > text.size())

throw new RuntimeException
(M_TOO_LARGE);

current = text.listIterator (m);
} // method line

protected String done () {

 // Iterate through the text, and print each line.

} // method done

What about ‘>’? To determine whether
itr is positioned at the current line, we
cannot check either itr == current or
itr.next().equals (current.next())

Why not?

itr == current won’t work because these
are references to iterators, not to elements,
nor even to entries.

itr.next().equals (current.next()) won’t
work because there may be copies of the
current element.

public String done ()
{
 final String FINAL_TEXT_MESSAGE =
 "\n\nHere is the final text:\n";
 String s = FINAL_TEXT_MESSAGE;

 ListIterator itr = text.listIterator();

 while (itr.hasNext())
 if (itr.nextIndex() == current.nextIndex())
 s = s + "> " + itr.next() + '\n';
 else
 s = s + " " + itr.next() + '\n';
 if (!current.hasNext())
 s = s + "> " + '\n';
 return s;
} // method done

26

The EditorDriver class

The EditorDriver class has openFiles()
and editText() methods. These are
virtually identical to the openFiles()
and testVeryLongInt() methods from
the VeryLongDriver class in Chapter 6.

The editText() method reads in each line
in the input file. The line is interpreted,
and exceptions are caught and printed.
For the $Done command, the text is
printed.

public void editText(){
 Editor editor = new Editor();
 String line = new String(),
 result = new String();
 while (true) {
 try {
 line = fileReader.readLine();
 if (line == null)
 break;
 fileWriter.println (line);
 result = editor.interpret (line);
 } // try
 catch (RuntimeException e)
 {
 fileWriter.println (e);
 } // catch RuntimeException
 catch (IOException e)
 {
 System.out.println (e);
 } // catch IOException
 if (line.equals (Editor.DONE_COMMAND))
 fileWriter.println (result);
 } // while
} // method editText

Group exercise: In the previous slide,
we had

if (line.equals (Editor.DONE_COMMAND))

What is the complete declaration of the
identifier DONE_COMMAND in the
Editor class?

