
1

Chapter 8

Stacks and Queues
A stack is a finite sequence of elements in
which the only element that can be removed
is the element that was most recently
inserted.

That is, the element most recently
inserted is the next element to be removed.

Last-In, First-Out (LIFO)

Top – The most recently inserted element

Push – To insert onto the top of a stack

Pop – To remove the top element in a stack

Start with an empty stack.

Push “Clayton.”

Top Clayton

2

 Push “Eric.”

Top Eric
Clayton

Pop. Top Clayton

The PureStack Interface

public interface PureStack<E>
{
 /**
 * Determines the number of elements in this
 * PureStack object.
 *

* @return the number of elements in this
 * PureStack object.

*
 */

 int size();

3

 /**
 * Determines if this PureStack object has no elements.
 *
 * @return true – if this PureStack object has no
 * elements; otherwise, return false.
 *
 */

boolean isEmpty();

 /**
 * Inserts a specified element on the top of this
 * PureStack object.
 * The averageTime(n) is constant and worstTime(n) is
 * O(n).
 *
 * @param element – the element to be pushed.
 *
 */
 void push (E element);

 /**
 * Removes the top element from this PureStack object.
 *
 * @return – the element removed.

* @throws NoSuchElementException – if this PureStack
 * object is empty.
 */
 E pop();

 /**
 * Returns the top element on this PureStack object.
 *
 * @return – the element returned.
 * @throws NoSuchElementException – if this PureStack
 * object is empty.
 */
 E peek();

 } // interface PureStack

There is an implementation in

java.util.

 public class Stack extends Vector {
 …

Vector is virtually identical to

ArrayList.

The push, pop and peek methods

are easily defined. For

example:

public E push(E item) {
 addElement(item);

 return item;
}

But NO Vector methods are

overridden. So it is possible to

invoke methods that violate

the definition of a stack!

For example,

myStack.remove (7);

4

Alternative implementations:

1. Inherit from ArrayList or LinkedList? Ugh!
Too many overrides.

2. Use an array?

protected E[] data;
protected int top;

Then top would be at the back of the array. Why?
3. Use an ArrayList or LinkedList? Yes, and all method
definitions are one-liners.

public class LinkedListPureStack<E>
{
 protected LinkedList<E> list;

 public LinkedListPureStack (
 LinkedListPureStack<E> otherStack)
 {
 list = new LinkedList<E> (otherStack.list);
 } // copy constructor

 public void push (E element)
 {
 list.add (element);
 } // method push
 …
} // class LinkedListPureStack

Determine the output from the following:

LinkedListPureStack<Integer> myStack =
new LinkedListPureStack<Integer>();

for (int i = 0; i < 10; i++)
myStack.push (i * i);

while (!myStack.isEmpty())
System.out.println (myStack.pop());

Stack Application 1

How Compilers Implement Recursion

Whenever a method is called, information
is saved to prevent overlaying of that info
in case the method is recursive. This
information is collectively referred to
as an activation record or stack frame.

Each activation record contains:

1. A variable that contains the return address in the

calling method;

2. For each parameter in the called method, a variable

that contains a copy of the corresponding argument;

3. For each variable declared in the called method’s

block, a variable that contains a copy of that
declared variable.

5

There is a run-time stack to handle
these activation records.

Push: When method is called

Pop: When execution of method is
completed

An activation record is similar to an
execution frame, except that an activation
record has variables only, no code.

You can replace recursion with iteration
by creating your own stack.

Recall from Chapter 5:

Decimal to Binary:

public static String getBinary (int n)
{
 if (n < 0)
 throw new IllegalArgumentException();
 if (n <= 1)
 return Integer.toString (n);
 return getBinary(n / 2) + Integer.toString(n % 2);// RA2
} // method getBinary

The following method maintains its own
stack:

public static String getBinary (int n)
{
 ArrayStack<Integer> myStack =
 new ArrayStack<Integer>();

 String binary = new String();

 if (n < 0)
 throw new IllegalArgumentException();
 myStack.push (n % 2);
 while (n > 1)
 {
 n /= 2;
 myStack.push (n % 2);
 } // pushing
 while (!myStack.isEmpty())
 binary += myStack.pop();
 return binary + "\n\n";
} // method getBinary

Notice that we save n % 2 on the stack, but
there is no need to save the return address
because this version of getBinary is not
recursive.

6

Exercise: Trace the execution of the above
method after an initial call of

getBinary (20);

show the contents of myStack.

Stack Application 2

Converting from Infix to Postfix

In infix notation, an operator is placed
between its operands.

a + b

c – d + (e * f – g * h) / i

Old compilers:

Infix Machine language

This gets messy because of parentheses.

Newer compilers:

Infix Postfix Machine language

In postfix notation, an operator is placed
immediately after its operands.

Infix Postfix
a + b ab+

a + b * c abc*+

a * b + c ab*c+

(a + b) * c ab+c*

Parentheses are not needed and not
used, in postfix.

7

Let’s convert an infix string to a postfix
string.

x – y * z

Postfix preserves the order of operands,
so an operand can be appended to postfix
as soon as that operand is encountered in
infix.

Infix Postfix

x – y * z x

Infix Postfix

x – y * z x

The operands for ‘-’ are not yet in postfix, so
‘-’ must be temporarily saved somewhere.

Infix Postfix

x – y * z xy

Infix Postfix

x – y * z xy

The operands for ‘*’ are not yet in postfix,
so ‘*’ must be temporarily saved somewhere,
and restored before ‘-’.

8

Infix Postfix

x – y * z xyz

Infix Postfix

x – y * z xyz* –

Suppose, instead, we started with x*y-z.
After moving ‘x’ to postfix, ‘*’ is
temporarily saved, and then ‘y’ is
appended to postfix. What happens when
‘-’ is accessed?

Infix Postfix

x * y – z xy

The ‘*’ must be moved to postfix now,
because both of the operands for ‘*’ are on
postfix. Then the ‘-’ must be saved
temporarily. After ‘z’ is moved to postfix,
‘-’ is moved to postfix, and we are done.

 Infix Postfix
 x * y – z xy*z–

The temporary storage facility is a stack.

Here is the strategy for maintaining the
stack:

For each operator in infix:
 Loop until operator pushed:
 If operator stack is empty,
 Push

 Else if infix operator has greater
 precedence than top operator
 on stack,
 Push
 Else
 Pop and append to postfix

9

Infix Greater, Push

Convert from infix to postfix:

Infix Postfix

a + b * c / d - e

Infix Postfix

a + b * c / d – e abc*d/+e –

-

/

*

+

Operator stack

What about parentheses?

Left parenthesis: Push, but with lowest
precedence.

Right parenthesis: keep popping and
appending to postfix until ‘(‘ popped;
pitch ‘(‘ and proceed.

Convert to postfix:

x * (y + z)

 Infix Posstfix
 x * (y + z) xyz+*

 +
 (
 *

 Operator stack

10

Infix Postfix
x * (y + z – (a / b + c) * d) / e

 Operator stack

To decide what action to take in
converting from infix to postfix, all
we need to know is the current character
in infix and the top character on
operator stack.

The following transition matrix specifies
the transition from infix notation to postfix
notation:

 Top Character on Stack
 (+,- *,/ empty
I
n identifier
f
i)
x (
 +,-
C
h *,/
a
r empty

 Append Append Append Append
 to to to to
 Postfix Postfix Postfix Postfix

Pop; Pop to Pop to Error
Pitch ‘(‘ Postfix Postfix
Push Push Push Push

Push Pop to Pop to Push
 Postfix Postfix

 Push Push Pop to Push
 Postfix
Error Pop to Pop to Done
 Postfix Postfix

Tokens

A token is the smallest meaningful unit
in a program.

Each token has two parts:

A generic part, for the category of the
token;

A specific part, to access the characters
in the token.

11

For example:

 // index 35 in symbol table

ADD_OP +, -

IDENTIFIER 35

 Infix-to-postfix applet
http://www.cs.lafayette.edu/~collinsw/infix/infix.html

In prefix notation, an operator immediately
precedes its operands.

Infix Prefix
a + b +ab

a * (b + c) *a+bc

a * b + c +*abc

In prefix notation, as in postfix, there are no
parentheses.

Two stacks are used:

Operator stack: Same rules as for postfix
stack

Operand stack: to hold the operands

Whenever opt is popped from operator
stack, opd1 and then opd2 are popped from
operand stack. The string opt + opd2 + opd1
is pushed onto operand stack.

Note: opd2 was pushed before opd1.

12

Convert from infix to prefix:

Infix
a + (b * c – d) / e

Infix Prefix
 a + (b * c – d) / e +a/– *bcde

 +a/– *bcde
 /– *bcde
 e
 –*bcd
 d /
 *bc –
 c *
 b (
 a +
 Operand Operator

 stack stack

Exercise: Convert to Prefix

a – b + c * (d / e – (f + g))

A queue is a finite sequence of elements in
which:

• Insertion occurs only at the back;

• Deletion occurs only at the front.

 Enqueue – To inset an element at the back

Dequeue – To delete the front element

Front – To return a reference to the front
element

In a queue, the first element inserted
will be the first element deleted: FIFO
(First-In, First-Out)

Compare to a stack: LIFO

(Last-In-First-Out)

13

Enqueue “Matt”
Matt

Front Back

Enqueue “Andrew”

Matt

Front

Andrew

Back

Enqueue “Samira”

SamiraMatt

Front

Andrew

Back

14

Dequeue

Samira

Front

Andrew

Back

 The PureQueue interface

public interface PureQueue<E>
{
 // Returns the number of elements in this PureQueue

// object.
int size();

 // Returns true if this PureQueue object has no
// elements.
boolean isEmpty();

 /**
 * Inserts a specified element at the back of this
 * PureQueue object. The averageTime(n) is
 * constant and worstTime(n) is O(n).
 *
 * @param element – the element to be appended.
 */
 void enqueue (E element);

 /**
 * Removes the front element from this PureQueue
 * object.
 *
 * @return – the element removed.
 * @throws NoSuchElementException – if this
 * PureQueue object is empty.
 */
 E dequeue();

 /**
 * Returns the front element in this PureQueue
 * object.
 *
 * @return – the element returned.
 *
 * @throws NoSuchElementException – if
 * PureQueue object is empty.
 *
 */
 E front();

 } // interface PureQueue

15

For the dequeue method, what is

worstTime (n)?

For the sake of code re-use, the
implementation will work with an
existing class.

ArrayList?

 LinkedList?

Inheritance:
The implementation of
PureQueue is-a LinkedList

or

Aggregation:
The implementation of
PureQueue has-a LinkedList

Inheritance Tax: 32 Overrides

public E get (int index) {

throw new UnsupportedOperationException();

}

So we’ll use aggregation:

public class LinkedListPureQueue<E>
 implements PureQueue<E>
{

 protected LinkedList<E> list;

public LinkedListPureQueue()
{
 list = new LinkedList<E>();
} // default constructor

public void enqueue (E element)
{
 list.addLast (element); // same as list.add (element);
} // method enqueue

public E dequeue()
{
 return list.removeFirst();
} // method dequeue

16

Determine the output from the following:

LinkedListPureQueue<Integer> myQueue =
new LinkedListPureQueue<Integer>();

for (int i = 0; i < 10; i++)
myQueue.enqueue (i * i);

while (!myQueue.isEmpty())
System.out.println (myQueue.dequeue());

Computer Simulation

A system is a collection of interacting
parts.

A model is a simplification of a system.

The purpose of building a model
is to study the underlying system.

Physical model: Differs from the system only
in scale or intensity.

Examples: War games, pre-season

Mathematical model: A set of equations,
variables, and assumptions

17

 A
 500’
 D

 ? 200’

 500’ C

 B 400’ E

 Assumptions: Angle ADC = angle BCD
 BEC forms a right triangle
 DCE forms a straight line
 Line segment AB parallel to DC

 Distance from A to B?

If it is infeasible to solve the math model by
hand, a program is developed.

Computer simulation: The development
of computer programs to solve math models

 Develop
 System Computer
 Model

Verify Run

 Interpretation Output
 Decipher

If the interpretation does not correspond
to the behavior of the system, change the
model!

Feedback: A process in which the factors
that produce a result are themselves
affected by that result

Here, the model is affected by its output.

Queue Application

A Simulated Car Wash

18

Analysis:

One wash station

10 minutes for each car to get washed

At any time, at most 5 cars waiting to be
washed; any others turned away and not
counted

Average waiting time = sum of waiting
times / number of cars

In a given minute, a departure is processed
before an arrival.

If a car arrives when no car is being washed
(then no car is waiting), the car immediately
enters the wash station.

A car stops waiting when it enters the wash
station.

Sentinel is 999.

System test 1:
8
11
11
13
14
16
16
20
999

Time Event Waiting Time
 8 Arrival
11 Arrival
11 Arrival
13 Arrival
14 Arrival
16 Arrival
16 Arrival (Overflow)

 18 Departure 0
20 Arrival
28 Departure 7
38 Departure 17
48 Departure 25
58 Departure 34
68 Departure 42
78 Departure 48

Average waiting time

= 173.0 minutes / 7 cars

= 24.7 minutes per car

19

Car Wash Applet

http://www.cs.lafayette.edu/~collinsw/carwash/car.html

Exercise:

Given the following arrival times,
determine the average waiting time:

4, 8, 12, 16, 23, 999 (the sentinel)

Design of CarWash class

 /**
 * Initializes this CarWash object.
 *
 */
 public CarWash()

 /**
* The next arrival at the specified time has been
* processed.

 *
 * @param nextArrivalTime – the time when the
 * next arrival will occur.
 *
 * @throws IllegalArgumentException – if

 * nextArrivalTime is less than the
 * current time.
 *
 */
 public void process (int nextArrivalTime)

/**
 * Washes all cars that are still unwashed after last arrival.
 *
 */
public void finishUp()

/*
 * Returns the history of this CarWash object’s arrivals and
 * departures, and the average waiting time.
 *
 * @return the history of the simulation, including the
 * average waiting time.
 *
 */
public LinkedList<String> getResults()

20

 Fields?

First, we’ll decide what variables will be
needed, and then choose the fields from
them.

 PureQueue<Car> carQueue;

Each element in carQueue will be of type
Car. What information about a car do we
need?

In the Car class:

// @return the arrival time of the car just dequeued.
public int getArrivalTime()

We have a Car class for the sake of later
modifications to the problem. For example,
the cost of a wash might depend on the
number of axles.

To calculate the average waiting time:

int numberOfCars,
sumOfWaitingTimes;

To get the sum of the waiting times:

int currentTime,
 waitingTime;

waitingTime = currentTime – car.getArrivalTime();

Calculated just before a car enters the wash

21

The simulation will be event-based: Is the
next event an arrival or a departure?

int nextArrivalTime,
nextDepartureTime; // = 10000 if no car being washed

 // (so next event will be an arrival)

Finally,

LinkedList<String> results; // to hold the chart of arrivals,
 // departures, and averageWaitingTime

A rule of thumb is that a field should
be needed in most of the class’s public
methods.

Fields:

PureQueue<Car> carQueue;

LinkedList<String> results;

int currentTime,
 waitingTime,
 sumOfWaitingTimes,
 numberOfCars,
 nextDepartureTime; // = 10000 if no car being washed

public CarWash()
{
 carQueue<Car> =
 new LinkedListPureQueue<Car>();
 results = new LinkedList<String>();
 results.add (“Time Event Waiting Time”);
 currentTime = 0;
 waitingTime = 0;
 numberOfCars = 0;
 sumOfWaitingTimes = 0;
 nextDepartureTime = 10000;
} // constructor

22

 public void process (int nextArrivalTime)
 {
 if (nextArrivalTime < currentTime)
 throw new IllegalArgumentException();
 while (nextArrivalTime >= nextDepartureTime)
 processDeparture();
 processArrival (nextArrivalTime);
 } // process

protected void processArrival (int nextArrivalTime)
{
 currentTime = nextArrivalTime;
 results.add (Integer.toString (currentTime) + “\tArrival”);
 if (carQueue.size() == 5)
 results.add (“ (Overflow)\n”);
 else
 {
 numberOfCars++;
 if (nextDepartureTime == 10000)
 nextDepartureTime = currentTime + 10;
 else
 carQueue.enqueue (new Car (nextArrivalTime));
 results.add ("\n");
 } // not an overflow
} // method processArrival

protected void processDeparture()
{
 currentTime = nextDepartureTime;
 results.add (Integer.toString (currentTime) + “\tDeparture\t\t” +
 Integer.toString (waitingTime) + "\n");
 if (!carQueue.isEmpty())
 {
 Car car = carQueue.dequeue();
 waitingTime = currentTime – car.getArrivalTime();
 sumOfWaitingTimes += waitingTime;
 nextDepartureTime = currentTime + 10;
 } // carQueue was not empty
 else
 {
 waitingTime = 0;
 nextDepartureTime = 10000;
 } // carQueue was empty
} // method processDeparture

If the next arrival times are read in, the
results are not generalizable. Instead,
we will read in
int meanArrivalTime; // the ave rage time between arrivals

Then, using
double randomDouble = random.nextDouble();

We calculate
int timeTillNext = (int)Math.round (-meanArrivalTime *
 Math.log (1 - randomDouble));

Exercise: Assume that

meanArrivalTime is 3. If

Math.log (1 – randomDouble) = –0.6

and currentTime = 25,

When will the next arrival occur?

timeTillNext = (int)Math.round (-meanArrivalTime *
Math.log (1 - randomDouble));

