

Here are some binary trees we will be studying in the next few chapters

A binary tree t is either empty or consists of an element, called the root element, and two distinct binary trees, called the left subtree and right subtree of t.

Using botanical terminology (besides root and tree):

A leaf is an element whose left and right subtrees are empty.

A branch is a line drawn from an element to its left or right subtree.

This is a binary search tree: Each element in the left subtree is less than the root element, each element in the right subtree is greater than the root element, and the left and right subtrees are themselves binary search trees.

This is an expression tree: Each leaf is an operand, and each non-leaf is a binary operator.

Can you create a binary tree in which each element in the left subtree is less than the root element and each element in the right subtree is greater than the root element, but the binary tree is not a binary search tree?

Suppose a binary tree t is a chain - that is, each element except the only leaf has exactly one branch. If \boldsymbol{t} has \boldsymbol{n} elements, how many branches are there from the root, the only leaf?

How can we define leaves (t), the number of leaves in a binary tree t ?

Recursively!

\square
if t is empty
leaves(t) $=0$
else if t consists of a root element only
leaves(t) $=1$
else
leaves $(\mathbf{t})=\operatorname{leaves}(\operatorname{leftTree}(\mathbf{t}))+$
leaves(rightTree(t))

Simplest case: When t is empty

Other simple case: When t has only 1 element

Otherwise, express the number of leaves in t in terms of the number of leaves in leftTree(t) and rightTree(t).

How about $n(t)$, the number of elements in t?
if t is empty
$\mathbf{n}(\mathrm{t})=$
else
$\mathbf{n}(\mathbf{t})=$

Now for some familial terminology:

40 is the left child of 50
50 is the parent of 40
50 is the parent of 70
40 and 70 are siblings
What is $\mathbf{9 1}$ to $\mathbf{5 0}$?
What is 91 to 48 ?

Descendant?
d is a descendant of a if
a is the parent of d
Or if
The parent of d is ...?

A path in a binary tree is a sequence of
elements in which each element except
the last is the parent of the next element
in the sequence.

Answer:

50, 80, 90, 84

One more example: What is the height of the tree if the height of the left subtree is 4 and the height of the right subtree is 10 ?

depth(x), the depth of an element x is the number of branches from the root element to x.

If x is the root element $\operatorname{depth}(x)=0$
Else $\operatorname{depth}(x)=$
level(x), the level of x, is the same as the depth of x.

In the following binary tree, what is depth(62)? level(90)? The height of the subtree rooted at 90 ?

Is this a two-tree?

A binary tree t is full if t is a two-tree and all of the leaves of t have the same depth.

Recursively speaking:

A binary tree t is full if t is empty or if height(leftTree(t)) $=$ height(rightTree(t)) and both leftTree(t) and rightTree(t) are ...?

A binary tree t is complete if t is full through a depth of height(\mathbf{t}) -1 , and each leaf whose depth is height (t) is as far to the left as possible.

A binary tree that is not complete:

A complete binary tree:

With each element in a complete binary tree, we associate a non-negative integer as follows:

This association suggests that a complete binary tree can be implemented with an array:

Parent at 0, children at 1, 2
Parent at 1, children at 3,4
Parent at 2, children at 5, 6
Parent at i, children at ?
Child at 1 , parent at 0
Child at 2, parent at 0
Child at 3, parent at 1
Child at 4, parent at 1
Child at 5, parent at 2
Child at 6, parent at 2
Child at i, parent at ?

So it is efficient to implement a complete binary tree with an array.

Can a complete binary be stored in an ArrayList? Yes, same idea as for an array.

How about a LinkedList? not good.
Exercise: Construct a binary tree \mathbf{t} such that

1. t is a two-tree (each element in t has either 2 children or no children);
2. t is complete;
3. height (leftTree (t)) = height (rightTree (t));
4. t is not full.

The binary-tree theorem:

For any non-empty binary tree t :

1. leaves $(\mathrm{t})<=\frac{\mathrm{n}(\mathrm{t})+1}{2.0}$
2. $\frac{\mathbf{n (t)}+1}{2.0}<=2^{\text {height(t) }}$

What is the significance of the binary tree theorem? Suppose t is full. Then

$$
\frac{n(t)+1}{2.0}=2^{\text {height(t) }}
$$

so
$\operatorname{height}(t)=\log _{2}\left(\frac{n(t)+1}{2.0}\right)$

In Chapter 10, we will look at a special kind
of binary tree: The binary search tree.

In a binary search tree, each element in the left subtree is less than the root element, each element in the right subtree is greater than the root element, and the left and right subtrees are ...?

In the BinarySearchTree class, the "average" height of a BinarySearchTree object is logarithmic in n, and so the average time to insert, remove or search is logarithmic in n.

But a BinarySearchTree object can be a chain; then the time to insert, remove or search is linear in n.

For an (unsorted) array, ArrayList, or LinkedList collection, the time to insert, remove or search is linear in n.

External Path Length

$$
E(t)=3+3+3+2+2=13
$$

This result is used in Chapter 11 when we establish a lower bound for sorting algorithms.

A traversal of a binary tree is an algorithm that accesses each item in the binary tree.


```
1. inOrder(t)
{
    if (t is not empty)
    {
        inOrder(leftTree(t));
        access the root element of t;
        inOrder(rightTree(t));
    } // if
} // inOrder traversal
Left - Root - Right
```


Answer: 12, 30, 40, 50, 86, 90, 100

Determine the order in which the elements would be accessed during an in-order traversal.

```2. postOrder (t) { if (t is not empty) { postOrder(leftTree(t)); postOrder(rightTree(t)); access the root element of t; } // if } // postOrder traversal Left - Right - Root```

Determine the order in which the elements would be accessed during a post-order traversal. Hint: An operator immediately follows its operands.


3. preOrder (t)
\{
if ( $\mathbf{t}$ is not empty)
\{
access the root element of $t$; preOrder (leftTree (t)); preOrder (rightTree (t));
\} // if
\} // preOrder traversal

Root - Left - Right

Determine the order in which the elements would be accessed during a pre-order traversal. Hint: An operator immediately precedes its operands.

4. To perform a breadth-first traversal of a nonempty binary tree, first access the root element, then the children of the root element, from left to right, then the grandchildren of the root element, from left to right, and so on.

Answer: +, -, X, Y, /, Z, *, A, B

## Prefix!

## Perform a breadth-first traversal

 of the following binary tree.


