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Chapter 9

Binary Trees

Here are some binary trees we will be 
studying in the next few chapters 
 
                          Binary Tree 
 
 
 
Binary       Expression   Heap  Decision  Huffman 
Search          Tree                       Tree         Tree 
Tree       
 
 
 
  AVL     Red-Black 
 Tree         Tree 

A binary tree t is either empty or consists 
of an element, called the root element, 
and two distinct binary trees, called the 
left subtree and right subtree of t.

                                cat 
 
 
            albatross                  frog   
 
 
                                      dog            turtle 
 
 
                                                 horse 
 

Those two subtrees are written as leftTree(t) 
and rightTree(t). Functional notation  
is used instead of object notation – such as 
t.leftTree( ) – because there will be no 
BinaryTree class.  

Why is there no BinaryTree class? It would 
not be flexible enough for the binary-tree-
based classes already in the Java collections 
framework (TreeMap and TreeSet). 
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Using botanical terminology (besides root
and tree):

A leaf is an element whose left and right
subtrees are empty.

A branch is a line drawn from an element
to its left or right subtree.

 

                                     + 
 
 

     –                                          / 
 
 
        X             Y                          Z                  * 
 
 
                                                                   A           B 
 
This is an expression tree: Each leaf is an 
operand, and each non-leaf is a binary 
operator. 

                           50

                            30               90

                             12       40               100

                                                       94
This is a binary search tree: Each element in the left subtree
is less than the root element, each element in the right
subtree is greater than the root element, and the left and
right subtrees are themselves binary search trees.

Can you create a binary tree in which each 
element in the left subtree is less than the 
root element and each element in the right 
subtree is greater than the root element, but 
the binary tree is not a binary search tree? 

Another binary search tree: 
 
                                         50 
 
 
                 32 
 
 
 
                               41 
 
 
 
                    38 
 
 
                         40  

Suppose a binary tree t is a chain – that  
is, each element except the only leaf has 
exactly one branch. If t has n elements,  
how many branches are there from the  
root, the only leaf? 
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How can we define leaves(t), the number  
of leaves in a binary tree t? 
 
 
Recursively! 

Simplest case: When t is empty

Other simple case: When t has only 1
element

Otherwise, express the number of leaves
in t in terms of the number of leaves in
leftTree(t) and rightTree(t).

if t is empty 
       leaves(t) = 0 
else if t consists of a root element only 
      leaves(t) = 1 
else 
     leaves(t) = leaves(leftTree(t)) +  

   leaves(rightTree(t)) 

How about n(t), the number of elements
in t?

if t is empty
     n(t) =
else
     n(t) =

Now for some familial terminology:

                                     50 
 
 
                  40                                 70 
 
  
                                                                        91 
                                   48   
 
40 is the left child of 50 
 

50 is the parent of 40 
 

50 is the parent of 70 
 

40 and 70 are siblings 
 
What is 91 to 50? 
 

What is 91 to 48?
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Descendant? 
 
 
d is a descendant of a if 
 
 a is the parent of d 
 
Or if 
 
     The parent of d is …? 

A path in a binary tree is a sequence of
elements in which each element except
the last is the parent of the next element
in the sequence.

                                    50

30 80

62 90

                                                               84

Determine the path from 50 to 84.

Answer:

50, 80, 90, 84

In a binary tree t, height(t) is the number of
branches from the root to the farthest leaf.

                                     50

30 80

62 90

                                                               84
Determine height(t)

                          50

30 80

62 90

height(t) = ?
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                           50

30 80

height(t) = ?

                                     50 
 
 
 
 
height(t) = ? 

One more example: What is the height of
the tree if the height of the left subtree is 4
and the height of the right subtree is 10?

So if a binary tree has height 0, its left and
right subtrees must each have a height of?

If t is empty 
 height (t) =  – 1 
Else 
     height (t) =  

depth(x), the depth of an element x is the number
of branches from the root element to x.

If x is the root element
depth(x) =  0

Else
    depth(x) =

level(x), the level of x, is the same as the depth of x.
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In the following binary tree, what is 
depth(62)? level(90)? The height  
of the subtree rooted at 90? 
                                     50 
 
 

30 80 
 
 
 

62 90 
 
 
                                                               84 
 

A binary tree t is a two-tree if t is empty
or if each non-leaf in t has two branches.

An example of a two-tree:

                                            A

                       B                                       C

       D                        E

                           F            G

Is this a two-tree?

                                            A

                       B                                       C

       D                        E                                    F

G          H           I            J                       K            L

Recursively speaking: 
 
 
A binary tree t is a two-tree if t is empty or  
if leftTree(t) and rightTree(t) are either both 
empty or both non-empty two-trees.  

A binary tree t is full if t is a two-tree and
all of the leaves of t have the same depth.
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A full binary tree:

                                            A

                       B                                       C

       D                        E                 F                        G

 H         I             J            K     L       M            N        O

Recursively speaking: 
 
 
A binary tree t is full if t is empty or if 
height(leftTree(t)) = height(rightTree(t)) 
and both leftTree(t) and rightTree(t)  
are …? 

A binary tree t is complete if t is full
through a depth of height(t) - 1, and
each leaf whose depth is height(t) is as far
to the left as possible.

A complete binary tree: 
 
                                            A 
 
 
                       B                                       C 
 
 
       D                        E                R                    S 
 
 
F            G          L

A binary tree that is not complete: 
 
                                            A 
 
 
                       B                                       C 
 
 
       D                        E                R                     
 
 
F            G          L          Q      B        G 

With each element in a complete binary tree,
we associate a non-negative integer as follows:

                                            A 0

                       B  1                                     C 2

       D 3                     E  4            R 5               S 6

F 7        G 8       L 9
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A B C D E R S F G L

This association suggests that a complete 
binary tree can be implemented with an 
array:

Then the random-access property of arrays
allows quick access of parent from child
and children from parent.

Parent at 0, children at 1, 2 
Parent at 1, children at 3, 4 
Parent at 2, children at 5, 6 
… 
Parent at i, children at ?  

Child at 1, parent at 0 
Child at 2, parent at 0 
Child at 3, parent at 1 
Child at 4, parent at 1 
Child at 5, parent at 2 
Child at 6, parent at 2 
… 
Child at i, parent at ?  

So it is efficient to implement a complete
binary tree with an array.

Can a complete binary be stored in an
ArrayList? Yes, same idea as for an array.

How about a LinkedList? not good.

Exercise: Construct a binary tree t such
that

1. t is a two-tree (each element in t has
either 2 children or no children);

2. t is complete;

3. height (leftTree (t)) = height
(rightTree (t));

4. t is not full.
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The binary-tree theorem:
For any non-empty binary tree t:

                                 n(t) + 1
1.  leaves(t)   <=
                                    2.0

         n(t) + 1
2.                    <=   2height(t)

             2.0

3. Equality holds in part 1 if and only if t
is a two-tree.

                       

4. Equality holds in part 2 if and only if t
is full.

What is the significance of the binary tree
theorem? Suppose t is full. Then

n(t) + 1
               = 2 height(t)

    2.0

so
                             n(t) + 1
height(t) = log2 (                )
                                2.0

That is, a full tree has height that is
logarithmic in n.

The height of a complete binary tree is also
logarithmic in n.

What about the height of a chain?

In Chapter 10, we will look at a special kind
of binary tree: The binary search tree.

50 

      30               90

12       40      86      100

25 60

                         71
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In a binary search tree, each element in the 
left subtree is less than the root element, 
each element in the right subtree is greater 
than the root element, and the left and right 
subtrees are …? 

In the BinarySearchTree class, the 
“average” height of a BinarySearchTree 
object is logarithmic in n, and so the  
average time to insert, remove or search  
is logarithmic in n. 

But a BinarySearchTree object can be a
chain; then the time to insert, remove or
search is linear in n.

For an (unsorted) array, ArrayList, or
LinkedList collection, the time to insert,
remove or search is linear in n.

External Path Length Let t be a non-empty binary tree. E(t), the
external path length of t, is the sum of the
depths of all leaves in t.
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For example, find the external path length
of the following binary tree:

                                            A

                       B                                       C

       D                        E                R                    S

F            G          L

E(t) = 3 + 3 + 3 + 2 + 2 = 13

The external path length theorem:

Let t be a binary tree with k > 0 leaves. Then

E(t) >= (k / 2) floor (log2k).

This result is used in Chapter 11 when
we establish a lower bound for sorting
algorithms.

Traversals of a Binary Tree A traversal of a binary tree is an algorithm
that accesses each item in the binary tree.
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The following traversal algorithms are not
methods because we have not defined, and
will not, define a binary-tree class.

1. inOrder(t)  
     { 

 if (t is not empty)  
    { 
  inOrder(leftTree(t)); 
  access the root element of t; 
  inOrder(rightTree(t)); 
 } // if 
} // inOrder traversal 
 
 
Left – Root – Right  

50 

      30               90

12       40      86      100

Determine the order in which the elements
would be accessed during an in-order
traversal.

Answer: 12, 30, 40, 50, 86, 90, 100

2. postOrder (t)  
       { 

 if (t is not empty)  
   { 
  postOrder(leftTree(t)); 
  postOrder(rightTree(t)); 
  access the root element of t; 
 } // if 
} // postOrder traversal 
 
Left – Right – Root  

Determine the order in which the elements 
would be accessed during a post-order 
traversal. Hint: An operator immediately 
follows its operands. 
                                     + 
 
 

– / 
 
 
        X             Y                          Z                  * 
 
 
                                                                  A           B
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Answer: X, Y, -, Z, A, B, *, / +

Postfix!

3. preOrder (t)  
 { 

   if (t is not empty)  
   { 
    access the root element of t; 
    preOrder (leftTree (t)); 
    preOrder (rightTree (t));    
   } // if 
  } // preOrder traversal 
 
 
  Root – Left – Right 

Determine the order in which the elements 
would be accessed during a pre-order 
traversal. Hint: An operator immediately 
precedes its operands.  
                                    + 
 
 

– / 
 
 
        X             Y                          Z                  * 
 
 
                                                                   A           B 

Answer: +, -, X, Y, /, Z, *, A, B

Prefix!

4. To perform a breadth-first traversal of a non-
empty binary tree, first access the root element, 
then the children of the root element, from left to 
right, then the grandchildren of the root element, 
from left to right, and so on. 

Perform a breadth-first traversal  
of the following binary tree. 
 
                                            A 
 
 
                       B                                       C 
 
 
       D                        E                R                    S 
 
 
F            G          L
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Answer: A, B, C, D, E, R, S, F, G, L

Perform the other traversals of that tree:

inOrder (Left-Root-Right)
postOrder (Left - Right - Root)
preOrder (Root - Left - Right)

                                            A

                       B                                       C

       D                        E                R                    S

F            G          L


