
1

Chapter 10

Binary Search Trees

A binary search tree t is a binary tree such that either t is
empty or

1. each element in leftTree(t) is less than the root
element of t;

2. each element in rightTree(t) is greater than the root
element of t;

3. both leftTree(t) and rightTree(t) are binary search
trees

Here is an example of a binary search tree:

 80

45 92

30 100

20 40 95 110

 97

A binary search tree need not be full,
complete or a two-tree, but it could
be any of those.

If a binary search tree is full or complete,
its height is logarithmic in n.

If a binary search tree is a chain, its height
is linear in n.

Even binary search trees that are not
chains may have height that is linear in n.
For example, suppose there are exactly
two elements at level 1, level 2, … .

See the following tree:

 80

45 92

30 100

 95 110

 93 97

2

The BinarySearchTree Class

The BinarySearchTree class implements
the Set interface, which has the same
methods as the Collection interface,
but does not allow duplicate elements.

The AbstractSet class has general-purpose
implementations of isEmpty(), toString(),
clear(), toArray(), …

public class BinarySearchTree<E>
 implements Set<E>,
 extends AbstractSet<E>

The BinarySearchTree class is not in the
Java collections framework, but it is a
much simplified version of the TreeSet
class, which is in the Java collections
framework. The BinarySearchTree
class has very few defined methods:

// Initializes this BinarySearchTree object to be empty,
// with elements of type E.
public BinarySearchTree()

// Initializes this BinarySearchTree object to contain a
// copy of otherTree.
public BinarySearchTree (BinarySearchTree<E> otherTree)

// Returns the number of elements in this
// BinarySearchTree object
public int size()

// Returns an iterator positioned at the first element
// in this BinarySearchTree object
public Iterator<E> iterator()

3

// Returns true if there is an element equal to obj in this
// BinarySearchTree object. The averageTime(n) is
// O(log n), and worstTime(n) is O(n).
public boolean contains (Object obj)

// Returns false if, before this call, this BinarySearchTree
// object contained an element equal to element. Otherwise,
// element has been inserted where it belongs in this
// BinarySearchTree object and true has been returned.
// The averageTime(n) is O(log n), and worstTime(n) is O(n).
public boolean add (E element)

// Returns false if, before this call, this BinarySearchTree
// object did not contain an element equal to obj.
// Otherwise, an element equal to obj has been
// removed from this BinarySearchTree object
// and true has been returned. The averageTime(n) is
// O(log n), and worstTime(n) is O(n).
public boolean remove (Object obj)

Exercise: In a processInput (String s)
method, convert s into an int n, and
then construct a BinarySearchTree
object tree that contains IntegerS with
values 0, 1, …, n – 1.

The following main method reads words from the
input into a BinarySearchTree until “***” is read in.

Then the first word, the last word, and “maybe” are
deleted, and after each deletion, the words are printed
in alphabetical order.

public static void main (String[] args)
{
 final String SENTINEL = "***";

 final String PROMPT = "Enter a word, or " + SENTINEL +
 " to quit: ";

 BufferedReader reader = new BufferedReader
 (new InputStreamReader (System.in));

 BinarySearchTree<String> tree =
 new BinarySearchTree<String>();

4

 try
 {
 while (true)
 {
 System.out.print (PROMPT);

 String word = reader.readLine();
 if (word.equals (SENTINEL))
 break;
 tree.add (word);
 } // while

 Iterator<String> itr = tree.iterator();
 tree.remove (itr.next());
 System.out.println (tree);

 String save = "";
 for (String word : tree)
 save = word;
 tree.remove (save);
 System.out.println (tree);

 tree.remove ("maybe");
 System.out.println (tree);
} // try
catch (IOException e) { }

} // method main

Fields and Implementation
of the BinarySearchTree Class

We assume that the elements in a
BinarySearchTree are objects in a class
that implements the Comparable interface:

public interface Comparable
{

int compareTo(Object obj);
} // interface Comparable

String s = “mellow”;

System.out.println (s.compareTo (“minty”));

The output will be < 0 because “mellow”
is, lexicographically, less than “minty”. In
general, the int returned will be < 0, = 0,
or > 0 depending on whether the calling
object is less than, equal to, or greater than
the argument.

 Entry<E> root;

 int size;

5

protected static class Entry<E>
{

 protected E element;

 protected Entry<E> left = null,
 right = null,
 parent;

 // Initializes this Entry object from element
 // and parent.

 protected Entry (E element, Entry<E> parent)
 {

 this.element = element;
 this.parent = parent;
 } // constructor
} // class Entry

 root element left right parent

 size
 4

Bob null

4

Ann null null Pat null

Jane null null

public Iterator<E> iterator()
{

return new TreeIterator();
} // method iterator

For the contains, add, and remove methods,
Keep in mind that the only element immediately
accessible is the root element: root.element.

Each element in the left subtree is less than the root
element, and each element in the right subtree is
greater than the root element.

80

40 90

60

50 75

contains (75)? contains (73)?

public boolean contains (Object obj) {
Entry<E> temp = root;
int comp;
while (temp != null) {

comp = ((Comparable)obj).compareTo
(temp.element);

if (comp == 0)
return true;

if (comp < 0)
temp = temp.left;

else
temp = temp.right;

} // while
return false;

} // contains

6

 The averageTime(n) for a successful search:

The average height of a binary search tree
is logarithmic in n.

So averageTime(n) is O(log n). In fact,
averageTime(n) is logarithmic in n.

The worstTime(n) occurs if the tree
is a chain. So worstTime(n) is ????

add (73);

80

40 90

60

50 75

80

40 90

60

50 75

73

Will the inserted element always be a leaf?

public boolean add (E element)
{

if (root == null)
{

root = new Entry (element, null);
size++;
return true;

} // empty tree
else
{

Entry<E> temp = root;

int comp;

while (true)
{

comp = ((Comparable)element).compareTo (temp.element);
if (comp == 0)

return false;
if (comp < 0)

if (temp.left != null)
temp = temp.left;

else
{

temp.left = new Entry<E> (element, temp);
size++;
return true;

} // temp.left == null
else if (temp.right != null)

temp = temp.right;
else { /* Insert as right child and leaf */ }

} // while

For adding an element, what is the worst case?
What is the worst height?

The worstTime (n) is linear in n.

What is the average height?

The averageTime (n) is logarithmic in n.

7

remove (50);

80

40 90

60

50 75

73

remove (40);

80

40 90

60

75

73

After removing 40:

80

60 90

75

73

remove (80);

80

60 110

75 100 150

73 85 105

95

The element 80 has two children, so we cannot simply
unlink 80 from the tree: that would create a hole.

Of the elements already in the tree, two could replace 80
(and then have the original deleted) without destroying
the binary search tree properties. Which two?

We can replace 80 with either its predecessor, 75, or
its successor, 85. We’ll choose its successor because
we will need the same successor method later
(where?). The successor of an element is the leftmost
element in the right subtree.

Replace 80 with 85, and then remove 85.

8

After removing 80:

85

60 110

75 100 150

73 95 105

Can removing the successor get complicated?
Can the successor have two children?

What is worstTime(n)?

What is averageTime(n)?

// Returns the successor Entry of e, if e has a successor.
// Otherwise, returns null. The averageTime(n) is constant,
and // worstTime(n) is O(n).
protected Entry<E> successor (Entry<E> e)

 50

 39 75

 25 61

 15 30 55 68

 28 32 59

 36

Successor of 36? Successor of 50?

protected Entry<E> successor (Entry<E> e)
{

if (e == null)
return null;

else if (e has a right child)
// successor is leftmost Entry in right subtree of e

else
// go up the tree to the left as far as possible,
then go up // to the right.

} // method successor

9

The TreeIterator Class

 protected class TreeIterator implements Iterator<E>
 {
 protected Entry<E> lastReturned = null,
 Entry<E> next;

Default Constructor:

Where should we start iterating? Root or
smallest element?

public E next() {

 lastReturned = ?

 next = ?

 return ?

} // method next

public void remove() {

BASICALLY:

remove (lastReturned.element);
lastReturned = null;

 lastReturned 40

20 75

 next 50 80

 50

20 75

 next 50 80

 Uggh!

10

 next 50

20 75

 80

 Ahhh!

Exercise: Draw the tree and determine the
contents of the BinarySearchTree object
myTree after the following:

BinarySearchTree<String> myTree =
 new BinarySearchTree<String>();

myTree.add (“C”);
myTree.add (“O”);
myTree.add (“N”);
myTree.add (“G”);
myTree.add (“R”);
myTree.add (“A”);
myTree.add (“T”);
myTree.add (“U”);
myTree.add (“L”);
myTree.add (“A”);
myTree.add (“T”);
myTree.add (“I”);
myTree.add (“O”);
myTree.add (“N”);
myTree.add (“S”);
myTree.remove (“C”);
Iterator<String> itr = myTree.iterator();
itr.next();
itr.next();
itr.next();
itr.remove();
itr.next();
System.out.println (itr.next());

The Problem:

For the contains, add, and remove
methods in the BinarySearchTree class,
the bad news is that worstTime(n) is linear
in n (for example, if the tree is a chain).

The good news is that averageTime(n)
is logarithmic in n for those methods.

A tree-oriented data structure is balanced
if its height is logarithmic in n.

For any balanced binary search tree,
searching, inserting and deleting have
worstTime(n) that is logarithmic in n.

11

The balance is maintained through rotations.

A rotation is an adjustment to the tree,
around an element, that maintains the
required ordering of elements.

Here is a right rotation around 90:

 90 45

 45 20 90

20

Here is a right rotation around 100:

 100 80

 80 120 40 100

40 90 50 90 120

 50

Notice that 90 is now in the right subtree.

In general, for any right rotation around
element x, the right subtree of x’s left child
becomes the left subtree of x.

 x y

 y x

 z z

Here is a right rotation around 100:

 160 160

 100 200 80 200

 80 120 40 100

40 90 50 90 120

 50

In a rotation around x, the only
restructuring is to the subtree rooted at x.

12

Let p (for parent) be a reference to an Entry
object, and let l (for left child) be a reference
to the left child of p.

For a right rotation around p:

p.left = l.right;

l.right = p;

The complete method also adjusts parents:

private void rotateRight(Entry<E> p) {
 Entry<E> l = p.left;
 p.left = l.right; From previous slide
 if (l.right != null) l.right.parent = p;
 l.parent = p.parent;
 if (p.parent == null)
 root = l;
 else if (p.parent.right == p)
 p.parent.right = l;
 else p.parent.left = l;
 l.right = p; From previous slide

p.parent = l;
}

A left rotation around 20:

 45
 20

 45 20 90

 90

Here is a left rotation around 30:
 60 60

 30 80 50 80

 20 50 30

 40 20 40
The height of the tree is still 3. What now?

Now a right rotation around 60:

 60 50

 50 80 30 60

 30 20 40 80

 20 40

 There are four kinds of rotation:

 1. A left rotation;

 2. A right rotation;

3. A left rotation around the left child of an element,

followed by a right rotation around the element
itself;

4. A right rotation around the right child of an
 element, followed by a left rotation around the
 element itself.

13

 Elements not in the subtree of the element rotated
about are unaffected by the rotation.

Elements not in the subtree of the element rotated
about are unaffected by the rotation.

A rotation takes constant time.

 Elements not in the subtree of the element rotated
about are unaffected by the rotation.

 A rotation takes constant time.

 Before and after a rotation, the tree is still a binary
 search tree.

Elements not in the subtree of the element
rotated about are unaffected by the rotation.

 A rotation takes constant time.

 Before and after a rotation, the tree is still a binary
 search tree.

 The code for a left rotation is symmetric to the
 code for a right rotation: Simply swap “left”
 and “right.”

AVL Trees

An AVL tree is a binary search tree that
either is empty or in which:

1. The heights of the left and right
subtrees differ by at most 1;

2. The left and right subtrees are AVL
trees.

14

50 50 50

 70 20 70 20 70

 10 25 61 10 90

 40

Some AVL Trees

50 50 50

 70 20 70 20 70

 61 10 25 10 80 90

 40

Some binary trees that are not AVL trees

If the heights of the left and right subtrees
of a binary search tree are the same, must
the tree be an AVL tree?

public class AVLTree<E> extends BinarySearchTree<E>
{
 // Override the add and deleteEntry method definitions.

 protected static AVLEntry<E>

extends BinarySearchTree.Entry<E>

 protected char balanceFactor = ‘=’;

 // definition of constructor

 } // embedded class AVLEntry

} // class AVLTree

 50
 L

 20 70
 R L

 10 25 61
 = R =

 40
 =

Exercise: Create an AVL tree of height four
that has as few elements as possible. Include
balance factors.

