
1

Chapter 12

Tree Maps
and Tree Sets

Red-Black Trees

A red-black tree is a balanced binary
search tree.

A red-black tree is a binary search tree that is empty
or in which the root element is colored black, every
other element is colored red or black, and

1. (Red rule) A red element cannot have any red

children;

2. (Path rule) The number of black elements is the same

in any path from the root element to an element with
no children or with one child.

The following are red-black trees:

 60

 30 80

 20 50 90

2

 60

 30 80

 20 50 90

 40

What about this?

 60

 30 80

 20 50 90

 40

 60

 30 80

 20 50 90

 40

This is not a red-black tree: The path from 60 to 80 has only
one black element!

 60

 30 80

 20 50 70 90

 Add 40?

 60

 30 80

 20 50 70 90

 40

 Add 35?

 60

 30 80

 20 50 70 90

This tree violates
 the path rule.

 40

 35

3

 60

 30 80

 20 50 70 90

 This tree violates
 the red rule.

 40

 35

Rotation to the Rescue!

 60

 30 80

 20 40 70 90

 35 50

 50

 30 90

 20 40 80 131

 60 85 100 150

 140 160

 180

Claim: The height of any red-black tree
is logarithmic in n.

(See Example 2.6 in Appendix 2.)

What is the minimum height
of a red-black tree?
 75

40 90

 20 60 80 100

 10 30 50

4

Suppose a red-black tree is complete, with
all black elements, except for red leaves at
the lowest level. Then the height of that tree
is, approximately, log2n.

What is the maximum height?

 50

 30 90

 20 40 80 131

 60 85 100 150

 140 160

 185

Suppose a red-black tree has all black elements, except that
one path from the root to a leaf has as many red elements
as possible. Then the length of that path, and the height
of the tree, will be maximal. The length of that path is
approximately twice the minimal height, so the maximum
height of a red-black tree will be, roughly, 2log2 (n).

Group exercise: Give an example of a
binary search tree that cannot be colored
to make it a red-black tree even though
the left and right subtrees have the same
height.

A map is a collection in which each
element has two parts: unique key part
and a value part.

For example, we can create a map of
students, in which each key is the student
ID, and each value is the student’s GPA.

Just as with the LinkedList and
BinarySearchTree classes, each element is
stored in an entry object. The Map.Entry
class has getKey() and getValue() methods.

5

The Java collection framework’s TreeMap
class stores a map in a red-black tree,
ordered by keys.

public class TreeMap<K, V>
 implements SortedMap<K, V>
 extends AbstractMap<K, V>

Here are method specifications for several
methods in the TreeMap class:

Note: The TreeMap class does not
implement the Collection interface –
because many of the methods are
key-value oriented.

/**
 * Initializes this TreeMap object to be an empty map.
 */
public TreeMap()

Example:

TreeMap<String, Double> students =
 new TreeMap<String, Double>();

/**
 * Ensures that there is an element in this TreeMap object
 * with the specified key&value pair. If this TreeMap
* object had an element with the specified key before
* this method was called, the previous value associated

 * with that key has been returned. Otherwise, null
 * has been returned.
 * The worstTime (n) is O (log n).
 *
 * @param key – the specified key
 * @param value – the specified value
 * @return the previous value associated with key, if
 * there was such a mapping; otherwise, null.
 *
 */
public V put (K key, V value)

Examples:

students.put (“L00000000”, 3.7);
students.put (“L11111111”, 2.0);
students.put (“L22222222”, 3.5);
students.put (“L44444444”, 4.0);
students.put (“L33333333”, 3.7);
students.put (“L22222222”, 3.8);

Now the GPA for L22222222 is 3.8

6

/**
* Determines if this TreeMap object contains a mapping
* with a specified key.

 * The worstTime (n) is O (log n).
 *
* @param key – the specified key
*

 * @return true – if this TreeMap object contains a mapping
 * with the specified key; otherwise, false.
 */
public boolean containsKey (Object key)

Example:

System.out.println (students.containsKey (“L11111111”));
 // output: true

/**
* Determines if this TreeMap object contains a mapping
* with a specified value.

 * The worstTime (n) is O (n).
 *
* @param value – the specified value
*

 * @return true – if this TreeMap object contains a mapping
 * with the specified value; otherwise, false.
 */
public boolean containsValue (Object value)

Example:

System.out.println (students.containsValue (3.4));
 // output: false

/**
 * Ensures that there is no mapping in this TreeMap object
 * with the specified key. If this TreeMap object had such
* a mapping before this method was called, the value

 * has been returned. Otherwise, null has been returned.
 * The worstTime (n) is O (log n).
 *
 * @param key – the specified key
 *
 * @return the value associated with key, if
 * there was such a mapping; otherwise, null.
 *
 */
public V remove (Object key)

Examples:

System.out.println (students.remove (“L22222222”));
 // output: 3.8

System.out.println (students.remove (“L23456789”));

// output: null

7

/**
 * @return a Set view of the mappings in this
 * TreeMap object.
 */
public Set entrySet()

Example: To print each student whose GPA
is above 3.5:

for (Map.Entry<String, Double> entry : students.entrySet())
if (entry.getValue() > 3.5)

 System.out.println (entry);

or

Iterator<Map.Entry<String, Double>> itr =
 students.entrySet().iterator();
while (itr.hasNext())
{
 Map.Entry<String, Double> entry = itr.next();

if (entry.getValue() > 3.5)
System.out.println (entry);

} // while

Here is the output:

L00000000=3.7
L11111111=2.0
L33333333=4.0
L44444444=3.7

Example: To print the ID of each student
whose GPA is above 3.5:

for (Map.Entry<String, Double> entry : students.entrySet())
if (entry.getValue() > 3.5)

 System.out.println (entry.getKey());

or

Iterator<Map.Entry<String, Double>> itr =
 students.entrySet().iterator();
while (itr.hasNext())
{
 Map.Entry<String, Double> entry = itr.next();

if (entry.getValue() > 3.5)
System.out.println (entry.getKey());

} // while

8

Here is the output:

L00000000
L11111111
L33333333
L44444444

Example: To print each GPA that
is above 3.5:

for (Double gpa : students.values())
if (gpa > 3.5)

 System.out.println (gpa);

or

Iterator<Double> itr = students.values().iterator();
while (itr.hasNext())
{
 Double gpa = itr.next();

if (gpa.doubleValue() > 3.5)
System.out.println (gpa);

} // while

Here is the output;

3.7
4.0
3.7

/**
 * Returns the value associated with a specified key in
 * this TreeMap object, or null if this TreeMap object has
 * no mapping with the specified key.
 * The worstTime (n) is O (log n).
 *
 * @param key – the specified key
 *
 * @return the value associated with key, or null if this
 * TreeMap object has no mapping with this key.
 *
 */
public V get (Object key)

Example:

System.out.println (students.get (“L11111111”));
System.out.println (students.get (“L22222222”));

The output will be

2.0
null

9

Exercise: Create phoneMap, a TreeMap
object in which each key is a 10-digit Long
(the phone number), and each value is a
String (the person with that phone number).
Insert 3 elements and then print phoneMap.

Illegal: 2222222222
Legal: 2222222222L

The fields in the TreeMap class

private transient Entry<K, V> root = null;
private transient int size = 0;

private transient int modCount = 0;

private Comparator comparator = null;

Recall that transient means that the field
itself will not be saved if the instance is
serialized (saved to disk).

public TreeMap()
{
 // comparator = null; key class implements
 // Comparable interface
} // default constructor

public TreeMap (Comparator c)
{
 comparator = c; // c implements Comparator interface
} // one-parameter constructor

Example: Suppose we construct a TreeMap
collection; the keys will be of type String
and the values will be Integer.

TreeMap<String, Integer> myMap =
new TreeMap<String, Integer>();

Recall the Comparable interface:

public interface Comparable
{
 int compareTo(Object obj);
}

10

The int returned by

x.compareTo (y)

Is < 0, if x is less than y;

Is = 0, if x is equal to y;

Is > 0, if x is greater than y.

Since myMap was initialized with the
default constructor, the keys are compared
by the String class’s compareTo method.
That performs a lexicographical
(≈ alphabetical) comparison:

 myMap.put (“yes”, 1);
 myMap.put (“no”, 1);
 myMap.put (“maybe”, 1);
 myMap.put (“true”, 1);
 myMap.put (“false”, 1);

Here, step-by-step, is the red-black tree
of keys; Note: When a key is inserted,
it is initially colored red.

 yes

Re-color black because the root
must be black.

 yes

 yes

 no

11

 yes

 no

 maybe

Rotate and re-color:

 no

 maybe yes

 no

 maybe yes

 true

Re-color “maybe” and “yes” black:

 no

 maybe yes

 true

 no

 maybe yes

 false true

System.out.println (myMap.keySet());

The output will be:
[false, maybe, no, true, yes]

12

for (String word : myMap.keySet())
System.out.println (word);

The output will be:
false
maybe
no
true
yes

Iterator<String> itr = myMap.keySet().iterator();
while (itr.hasNext())

System.out.println (itr.next());

The output will be:
false
maybe
no
true
yes

Suppose myMap is a TreeMap object
with keys of type String and values
of type Integer.

1. To print each element:

System.out.println (myMap);
System.out.println (myMap.entrySet());

 // KEYS AND VALUES

System.out.println (myMap.keySet());
// KEYS ONLY

System.out.println (myMap.values());
// VALUES ONLY

2. To iterate through the entries, keys or
values without removing from myMap:

for (Map.Entry<String, Integer> entry : myMap.entrySet())

 …entry.getKey()…entry.getValue()

for (String word : myMap.keySet())
 … word…

for (Integer frequency : myMap.values())
 … frequency …

3. To iterate through the elements and,
possibly, removing some from myMap:

Iterator<Map.Entry<String, Integer>> itr =
 myMap.iterator().entrySet();
or
 Iterator<String> itr = myMap.iterator().keySet();

 or
 Iterator<Integer> itr = myMap.iterator().values();

 while (itr.hasNext())
 … itr.next()… // an entry, a key or a value

13

Now we’ll look at the Comparator
interface:

public interface Comparator<T>
{

 int compare (T o1, T o2);

 boolean equals (Object obj);

} // interface Comparator

The int returned by

compare (x, y)

is < 0, if x is less than y;

is = 0, if x is equal to y;

is > 0, if x is greater than y.

The Comparator interface allows a user of
a class to override how that class performs
comparisons. For example, suppose we
want to order String objects by the length
of the string instead of lexicographically.

Example:

public class ByLength implements Comparator<String>
{

/**
 * Compares two specified String objects
 * lexicographically if they have the same length, and

 * otherwise returns the difference in their lengths.
 *
 * @param s1 – one of the specified String objects.
 * @param s2 – the other specified String object.
 *
 * @return s1.compareTo (s2) if s1 and s2 have the
* same length; otherwise, return

 * s1.length() – s2.length().
*

 */

 public int compare (String s1, String s2)
 {
 int len1 = s1.length(),
 len2 = s2.length();
 if (len1 == len2)
 return s1.compareTo (s2);
 return len1 – len2;
 } // method compare

} // class ByLength

TreeMap<String, Integer> yourMap =
 new TreeMap<String, Integer> (new ByLength());

yourMap.put (“yes”, 1);
yourMap.put (“no”, 1);
yourMap.put (“maybe”, 1);
yourMap.put (“true”, 1);
yourMap.put (“false”, 1);

Now the ordering is by the length of the
keys (but lexicographically for keys with
the same length).

14

 yes

 no false

 true maybe

for (String word : yourMap.keySet())
 if (word.length() > 2)

System.out.println (word);

The output will be:
yes
true
false
maybe

Now, back to the fields and definitions
of the TreeMap class.

private static final boolean RED = false;

private static final boolean BLACK = true;

static class Entry<K, V> implements Map.Entry<K, V> {

K key;
V value;
Entry<K, V> left = null;
Entry<K, V> right = null;
Entry<K, V> parent;
boolean color = BLACK;

// methods such as getKey(), getValue(), toString()

} // class Entry

Application of TreeMapS

A Simple Thesaurus

15

Problem: Given a thesaurus file and
words entered from the keyboard, print
the synonym(s) of each word entered.

Analysis: A thesaurus is a dictionary of
synonyms. An error message is printed
for each word entered that has no
synonyms in the thesaurus file.

Assume the thesaurus file is as follows:

Good enjoyable pleasant nice persistent
determined serene tranquil calm

System test (input in blue):
In the input line, please enter the name of the thesaurus file.
thesaurus.dat

In the input line, please enter a word. The sentinel is ***.
HALYCON
The word is not in the thesaurus.

In the input line, please enter a word. The sentinel is ***.
SERENE
The synonyms are: TRANQUIL CALM

In the input line, please enter a word. The sentinel is ***.

Design: There will be two classes:

Thesaurus: To maintain synonym
 information;

ThesaurusTester: To handle input
 and output.

// Postcondition: this Thesaurus has been initialized.
public Thesaurus()

// Postcondition: line has been added to this Thesaurus. The
// worstTime (n) is O (log n).
public void add (String line)

// Postcondition: the LinkedList of synonyms of word has been
// returned. The worstTime (n) is O (log n).
public LinkedList<String> getSynonyms (String word)

The only field is a TreeMap in which
the key is a word and the value is the
LinkedList of synonyms of the word:

TreeMap<String, LinkedList<String>>
thesaurusMap;

16

Implementation: The definitions of the
constructor and getSynonyms are one-
liners:

public Thesaurus() {
thesaurusMap = new TreeMap

<String, LinkedList<String>>();
} // default constructor

public LinkedList<String> getSynonyms (String word) {
return thesaurusMap.get (word);

} // method getSynonyms

The add method tokenizes the line,
makes the first token the key, and
stores – as the value – the remaining
tokens in a LinkedList:

public void add (String line)
{
 LinkedList<String> synonymList =

new LinkedList<String>();

 StringTokenizer st = new StringTokenizer (line);

 String word = st.nextToken();

 while (st.hasMoreTokens())
 synonymList.add (st.nextToken());
 thesaurusMap.put (word, synonymList);
} // method add

The ThesaurusTester class will have three
methods:

A default constructor,

constructThesaurus (from path read
in from keyboard)

printSynonyms (from keyboard input)

Fields:

protected Thesaurus thesaurus;

 protected BufferedReader keyboardReader;

public ThesaurusTester()
{
 thesaurus = new Thesaurus();
 keyboardReader = new BufferedReader

(new InputStreamReader (System.in));
} // default constructor

17

public void constructThesaurus()
{

 final String FILE_PROMPT =
"\nPlease enter the path for the thesaurus file: ";

 final String NO_INPUT_FILE_FOUND_MESSAGE =
 "Error: there is no file with that path.\n\n";

 BufferedReader fileReader;

 String inFilePath,
 line;

 boolean pathOK = false;
 while (!pathOK)
 {
 try
 {

 System.out.print (FILE_PROMPT);
 inFilePath = keyboardReader.readLine();

 fileReader = new BufferedReader (new
FileReader (inFilePath));

 pathOK = true;
 while (true) {
 line = fileReader.readLine();
 if (line == null)
 break;
 thesaurus.add (line);
 } // while not at end of file
 } // try
 catch (IOException e)
 {
 System.out.println (e);
 } // catch
 } // while !pathOK
} // method constructThesaurus

public void printSynonyms()
{
 final String SENTINEL = "***";

 final String WORD_PROMPT =

"\n\nPlease enter the sentinel (" +
SENTINEL + ") or a word: ";

 final String WORD_NOT_FOUND_MESSAGE =
 "That word does not appear in the thesaurus.";

 final String SYNONYM_MESSAGE =

"The synonyms of that word are ";

 String word;

 LinkedList<String> synonymList;

while (true) {
 try {

 System.out.print (WORD_PROMPT);
 word = keyboardReader.readLine();

 if (word.equals (SENTINEL))
 break;
 synonymList = thesaurus.getSynonyms (word);
 if (synonymList == null)

 System.out.println
(WORD_NOT_FOUND_MESSAGE);

 else
 System.out.println (SYNONYM_MESSAGE

+ synonymList);
 } // try
 catch (IOException e) {
 System.out.println (e);
 } // catch
 } // while

// printSynonyms

Time estimates? Let n represent the
number of lines in the input file
and m represent the number of words
entered from the keyboard.

In constructThesaurus, each of the n
lines is added to a red-black tree, so
worstTime(n) is linear-logarithmic in n.

18

Exercise: In printSynonyms, estimate
worstTime(m, n). The TreeSet Class

A TreeSet is an ordered Collection in
which duplicate elements are not allowed.

The TreeSet class has all of the methods in
the Collection interface (add, remove, size,
contains, …) plus toString (inherited from
AbstractCollection) and several
constructors.

public class TreeSet<E>
 extends AbstractSet<E>
 implements SortedSet<E>,

Cloneable,
java.io.Serializable

{

public TreeSet()
 // ASSUMES ELEMENTS ORDERED
 // BY Comparable INTERFACE

public TreeSet (Comparator<? super E> c)
 // ASSUMES ELEMENTS ORDERED
 // BY Comparator c

public TreeSet (Collection<? extends E> c)
 // COPY CONSTRUCTOR; ASSUMES
 // ELEMENTS ORDERED BY

// Comparable INTERFACE

Here are a pair of TreeSet declarations
followed by a few messages. The
ByLength class was defined earlier.

19

 TreeSet<Integer> tree1 = new TreeSet<Integer>();
 TreeSet<String> tree2 =

new TreeSet<String> (new ByLength());

 tree1.add (83);
 tree1.add (74);
 tree1.add (83);
 tree1.add (92);
 if (tree1.remove (55))
 System.out.println ("How did 55 get there?");
 else
 System.out.println ("size of tree1 = " + tree1.size());
 System.out.println (tree1);

 tree2.add ("yes");
 tree2.add ("no");
 tree2.add ("maybe");
 tree2.add ("true");
 tree2.add ("false");
 System.out.println (tree2);

The output is:

size of tree1 = 3
[74, 83, 92]
[no, yes, true, false, maybe]

The TreeSet class is implemented with
a TreeMap in which all of the values are
the same.

private transient SortedMap<E, Object> m;
// The backing Map

private transient Set<E> keySet;
// The keySet view of the backing Map

// Dummy value to associate with an Object in the
// backing Map
private static final Object PRESENT = new Object();

Because all of the work is done in the
underlying map, the TreeSet methods
are one-liners.

For example:

/**
 * Initializes this TreeSet object from a specified
 * SortedMap object.
 *
 * @param m – the specified SortedMap object.
 *
 */
private TreeSet (SortedMap<E, Object> m)
{
 this.m = m; // OK, so this is a
 keySet = m.keySet(); // two-liner
} // constructor with map parameter

20

/**
 * Initializes this TreeSet object to be empty.
public TreeSet()
{
 this (new TreeMap<E, Object>());
} // default constructor

public boolean contains (Object obj)
{
 return m.containsKey (obj);
} // method contains

public boolean add (E element)
{

return m.put (element, PRESENT) == null;
} // method add

Recall that if m already has a key equal to
element, the old value (namely, PRESENT)
is returned.

/**
 * Returns the smallest element in this TreeSet object.
 * The worstTime(n) is O(log n).
 *
 * @return the smallest element, according to this
 * TreeSet object’s ordering.
 *
 */
public E first()
{
 return m.firstKey();
} // method first

The TreeSet class has the same methods
as the BinarySearchTree class, but is faster,
at least in the worst case. For add, remove,
and contains, worstTime(n) is logarithmic
in n, versus linear in n for the
BinarySearchTree class.

TreeSet Application

 A Spell Checker

21

Problem: Given a dictionary, in the file
supplied by the end-user, and a document,
in a file supplied by the end-user, print the
words in the document that are not in the
dictionary.

Analysis:

1. The dictionary consists of lower-case words only.

2. Each word in the document file consists of letters

only – some or all may be in upper-case.

3. Each word in the document file is followed by zero or

more punctuation symbols followed by any number of
blanks and end-of-line markers.

4. The dictionary file is in alphabetical order, and will

fit in memory. The document file, not necessarily in
alphabetical order, will fit in memory if duplicates
are excluded.

Assume the dictionary file consists of
asterisk
do
misspell
not
please
separate

and the document file consists of
Please do not ever mispell asteriks!

System Test:
Please enter the name of the dictionary file: dictionary.dat

Please enter the name of the document file: docfile.dat

The following words are possibly misspelled:
[asteriks, ever, mispell]

Design: As usual, we will separate the spell
checker aspects from the input / output
aspects.

The SpellChecker class has four methods:

/**
 * Initializes this SpellChecker object to be empty.
 */
public SpellChecker ()

/**
 * Inserts a specified word into the dictionary.
 * The worstTime(n) is O(log n), where n is the number
 * of words in the dictionary.
 *
 * @param word – the word to be inserted in the dictionary.
 *
 */
public void addToDictionarySet (String word)

/**
 * Inserts the words in a specified line to the document.
 * The worstTime(m) is O(log m), where m is the number of
 * unique words in the document.
 *
 * @param line – the specified line whose words are to be
 * inserted into the document.
 *
 */
public void addToDocumentSet (String line)

22

/**
 * Finds each word in the document that is not in the dictionary.
 * The worstTime(m, n) is O(m log n), where m is the number
 * of unique words in the document file and n is the number of
 * words in the dictionary file.
 *
 * @return the LinkedList of words that are in the document but
 * not in the dictionary.
 */
public LinkedList<String> compare()

The only fields are

TreeSet<String> dictionarySet,
 documentSet;

Implementation:

The definitions of the default constructor
and addToDictionary are straightforward:

 public SpellChecker () {
 dictionarySet = new TreeSet<String>();
 documentSet = new TreeSet<String>();
 } // default constructor

 public void addToDictionarySet (String word) {
 dictionarySet.add (word);
 } // method addToDictionarySet

To add the words in a line to documentSet,
the line is tokenized, with delimiters that
include punctuation symbols. Each word is
lower-cased and inserted in documentSet
unless the word is already there.

public void addToDocumentSet (String line)
{
 final String DELIMITERS = " \n\r\t;:.,!?()";

 StringTokenizer tokens = new
 StringTokenizer (line, DELIMITERS);

 String word;

 while (tokens.hasMoreTokens())
 {
 word = tokens.nextToken().toLowerCase();
 documentSet.add (word);
 } // while line has more tokens
 } // method addToDocumentSet

Let m represent the number of words
in the TreeSet object documentSet. When
addToDocumentSet is called, that method
calls the TreeSet method add, for which
worstTime(m) is logarithmic in m.
So for the addToDocumentSet method,
worstTime(m) is logarithmic in m.

23

The compare method iterates through
words. For each word that is not in
dictionarySet, the word is appended to
misspelled, an initially empty LinkedList.

public LinkedList<String> compare()
{
 LinkedList<String> misspelled = new LinkedList<String>();

 for (String word : documentSet)
 if (!dictionarySet.contains (word))
 misspelled.add (word);
 } // while
 return misspelled;
} // method compare

To iterate through the m words in
documentSet takes linear-in-m time. Each
search of the n words in the TreeSet object

dictionarySet takes logarithmic-in-n time.

So for compare, worstTime(m, n) is
O(m log n). In fact, worstTime(m, n)
is Θ(m log n).

/**
* Initializes this SpellCheckerTester object.
*/

public SpellCheckerTester ()

/**
* Reads in and saves a file of a specified type (“dictionary” or
* “document”).
* The worstTime(t) is O(t log t), where t is the number of lines in

* the file.
*

 * @param fileType – a String object representing the type of file,
 * “dictionary” or “document”, to be read in.
 *
 */
public void readFile (String fileType)

/**
 * Prints the misspelled words – those that are in the document
 * set but not in the dictionary set.
 */
public void printResults()

Exercise: Why does the readFile method
have a loop? Why does the printResults
method not have a loop?

