
1

Chapter 14

Hashing

averageTimeS(n), the average time
for a successful search

averageTimeU(n), … unsuccessful …

worstTimeS(n)

worstTimeU(n)

Let’s start with a review of earlier search
techniques:

Sequential Search

/**
 * Determines if this AbstractCollection object contains
 * a specified element.
 * The worstTime(n) is O(n).
 *
 * @param obj – the element searched for in this
 * AbstractCollection object.
 *
 * @return true – if this AbstractionCollection object
 * contains obj; otherwise, return false.
 */

public boolean contains(Object obj)
{
 Iterator<E> e = iterator();
 if (obj == null)
 {
 while (e.hasNext())
 if (e.next()==null)
 return true;
 } // if obj == null
 else
 {
 while (e.hasNext())
 if (obj.equals(e.next()))
 return true;
 } // obj != null
 return false;
} // method contains

The worstTimeU(n) is linear in n.

Ditto for worstTimeS(n), averageTimeU(n),
and averageTimeS(n).

2

Binary search of an array

Note: The array must be sorted.

The following method is in Arrays.java:

public static int binarySearch(Object[] a, Object key)
{
 int low = 0;
 int high = a.length-1;

 while (low <= high) {
 int mid =(low + high)/2;
 Comparable midVal = (Comparable)a[mid];
 int cmp = midVal.compareTo(key);
 if (cmp < 0)
 low = mid + 1;
 else if (cmp > 0)
 high = mid - 1;
 else
 return mid; // key found
 } // while
 return -(low + 1); // key not found
} // method binarySearch

The worstTimeU(n) is logarithmic in n.

Ditto for worstTimeS(n), averageTimeU(n),
and averageTimeS(n).

Red-Black Tree Search

The following method is in TreeMap.java:

private Entry<K, V> getEntry(Object key)
{
 Entry<K, V> p = root;
 K k = (K)key;
 while (p != null)
 {
 int cmp = compare(k,p.key);
 if (cmp == 0)
 return p;
 else if (cmp < 0)
 p = p.left;
 else
 p = p.right;
 } // while
 return null;
} // method getEntry

The worstTimeU(n) is logarithmic in n.

Ditto for worstTimeS(n), averageTimeU(n),
and averageTimeS(n).

3

Now let’s focus on an unusual but very
efficient search technique:

 Hashing

The class in which hashing is implemented
is the HashMap class.

To a user, the HashMap class seems almost
identical to the TreeMap class, except for
the timing estimates.

public class HashMap<K,V>
 extends AbstractMap<K,V>
 implements Map<K,V>, Cloneable, Serializable

Recall that each element in a map consists
of a unique key and a value.

Method descriptions for the HashMap
class:

 /**
 * Initializes this HashMap object to be empty, with a
 * default initial capacity.
 */

public HashMap()

 /**
 * Initializes this HashMap object to be empty, with a
 * default initial capacity.
 */

public HashMap()

 Where have you seen this before?

4

 /**
 * Initializes this HashMap object to be empty, with a
 * specified initial capacity.
 *
 * @param initialCapacity – the specified initial capacity.
 *
 */

public HashMap (int initialCapacity)

/**
* Determines if this HashMap object contains a mapping
* with a specified value.

 *
* @param value – the specified value
*

 * @return true – if this HashMap object contains a mapping
 * with the specified value; otherwise, false.
 */
public boolean containsValue (Object value)

/**
* Determines if this HashMap object contains a mapping
* with a specified key.

 *
* @param key – the specified key
*

 * @return true – if this HashMap object contains a mapping
 * with the specified key; otherwise, false.
 */
public boolean containsKey (Object key)

/**
* Determines if this HashMap object has a mapping
* that has a specified key.

 *
 * @param key – the specified key
 * @return the value corresponding to the specified key,
 * if this HashMap object has a mapping with
 * the specified key; otherwise, returns null.
 */
public V get (Object key)

In what sense is this method “better”
than containsKey? In what sense
is it worse?

/**
 * Ensures that there is an element in this HashMap object
 * with the specified key&value pair. If this HashMap
* object had an element with the specified key before
* this method was called, the previous value associated

 * with that key has been returned. Otherwise, null
 * has been returned.
 *
 * @param key – the specified key
 * @param value – the specified value
 * @return the previous value associated with key, if
 * there was such a mapping; otherwise, null.
 *
 */
public V put (K key, V value)

/**
 * Ensures that there is no mapping in this HashMap object
 * with the specified key. If this HashMap object had such
* a mapping before this method was called, the value

 * has been returned. Otherwise, null has been returned.
 *
 * @param key – the specified key
 *
 * @return the value associated with key, if
 * there was such a mapping; otherwise, null.
 *
 */
public V remove (Object key)

5

And other methods you also saw in the
TreeMap class:

 size, keySet, entrySet, values, toString, …

We’ll study the time estimates after we
define the methods. But basically, for
containsKey, get, put, and remove,

averageTimeS(n) is constant!

 HashMap<String, Integer> ageMap =
 new HashMap<String, Integer>();

 ageMap.put ("dog", 15);
 ageMap.put ("cat", 20);
 ageMap.put ("human", 75);
 ageMap.put ("turtle", 100);
 System.out.println (ageMap);
 for (Map.Entry<String, Integer> entry :
 ageMap.entrySet())
 if (entry.getValue() > 50)
 System.out.println (entry.getKey());

 Iterator<String, Integer> itr =
 ageMap.entrySet().iterator();
 while (itr.hasNext())
 if (itr.next().getValue() >= 20)
 itr.remove();
 System.out.println (ageMap);

Here’s the output:

{dog=15, cat=20, turtle=100, human=75}
turtle
human
{dog=15}

Recall that the TreeMap class used the
“natural” ordering supplied by the
Comparable interface, or an ordering
supplied by a comparator.

What about HashMap objects? Are they
ordered?

Stick around!

6

Fields in the HashMap class

Continguous
array? ArrayList? Heap?

Linked
LinkedList? TreeMap?

But none of these will give constant average
time for searches, insertions and removals.

Here is the main idea:

private transient Entry table[]; // to hold the elements;

private transient int size; // number of elements in the
 // HashMap object

Let’s see where that leads. Suppose we
have

HashMap<Integer, String> persons =
 new HashMap<Integer, String> (1024);

Each key will be a (unique) 3-digit integer.

Each value will be a name.

 table size

 0 null 0

 1 null

 2 null
 .
 .
 .

1023 null

persons.put (351, “Prashant”);

persons.put (108, “Barrett”);

persons.put (435, “Lin”);

Where should we store the element
whose key is 351?

7

 table size

 0

108

351

435

1023

 3 null
 …

…

…

…

null

108 Barrett

351 Prashant

435 Lin

Now for something slightly different:

HashMap<Integer, String> persons =
new HashMap<Integer, String> (1024);

There will be at most 1000 persons.
Each key will be a 9-digit social security
number. Each value will be a name.

persons.put (123456789, “Prashant”);

persons.put (428671256, “Barrett”);

persons.put (884739816, “Lin”);

persons.put (403578063, “Sutey”);

We want these elements scattered
throughout the table.

The Integer class has a hashCode()
method that simply returns the underlying
int. The HashMap class has a hash
method:

static int hash(Object x) {
 int h = x.hashCode();

 h += ~(h << 9);
 h ^= (h >>> 14);
 h += (h << 4);
 h ^= (h >>> 10);
 return h;
}

This hash method scrambles up the key.
For example,

hash (123456789)

Returns 1272491941

We can get an index in the range 0 … 1023
as follows:

int index = hash (123456789) % 1024; // index = 933

We can get the same index a little faster:

int index = hash (123456789) & 1023;

8

The & operator performs a “bitwise and”
on its operands.

For each pair of bits a and b, if a and b
are both 1 bits, a & b = 1. Otherwise,
a & b = 0.

For example,

 10100001101001
&00000000001111
 00000000001001

1023, as a 32-bit integer, is

00000000000000000000000111111111

so

w & 1023

returns the rightmost 9 bits of the operand
w. In general, this works well as long as the
table length is a power of 2.

123-45-6789 933

428-67-1256 500

884-73-9816 234

123-45-6789 933

428-67-1256 500

884-73-9816 234

403-57-8063 933 Oops!

When two different keys yield the same
index, that is called a collision.

Keys that yield the same index are called
synonyms.

Hashing:

The process of transforming a key into
an array index.

9

Here is the general idea:

 hash (key) & table.length – 1
key index

and then handle collisions. We’ll study
collisions handlers soon.

In the String class:

public int hashCode() {

 int h = 0;
 int off = offset; // index of first character in array
 // value
 char val[] = value; // value is the array of char that
 // holds the String
 int len = count; // count holds the number of
 // characters in the String

 for (int i = 0; i < len; i++)
 h = 31*h + val[off++];

 return h;

} // method hashCode

Exercise: Calculate “cat”.hashCode().

Hint: ‘c’ has an integer value of 99, ‘a’ …

97, ‘t’ … 116

This is mainly an arithmetic exercise to show
you how keys of type String get hashed into a
table. For example, hash (“cat”) & 127 = 91.

As you might have guessed, hashing is
inefficient when there are a lot of collisions.

Users of the HashMap class “hope”
that the keys are scattered randomly
throughout the table. This hope is
formally stated as follows:

The Uniform Hashing Assumption

Each key is equally likely to hash to any
one of the table addresses, independently
of where the other keys have hashed.

10

Even if the uniform hashing assumption
holds, there may still be collisions.

Now we’ll look at collision handlers.

Chaining: At index i in table, store the
linked list of all elements whose keys hash
to i.

This is how the Java collections framework
implements hashing. Note: The table length
must be a power of 2.

transient Entry table[]; // an array of type Entry;
 // at each index in table,
 // we will store the
 // singly-linked list of all
 // those elements whose
 // keys that hash to that
 // index

transient int size; // the number of elements in the
 // HashMap;

float loadFactor; // the maximum ratio of size /
 // table.length before resizing of table
 // will occur;

int threshold; // = (int) (table.length * loadFactor);
 // when size reaches threshold, the
 // table is resized (to 2 * table.length)

static class Entry<K,V> implements Map.Entry<K,V>
{
 final K key; // key, once set, cannot be changed
 V value;
 final int hash; // to avoid recalculation
 Entry<K,V> next;

 Entry(int h, K k, V v, Entry<K,V> n)
 {
 value = v;
 next = n;
 key = k;
 hash = h;
 }

Insert elements with these keys into a table of
length 1024:

214-20-1469
987-65-4376
214-35-4110
033-00-0243
819-02-1951
777-51-2413
214-35-0348
033-30-2661

Note: These numbers were “rigged” to get
collisions.

11

 table size

 0

 1

 ...

261

262

...

528

...

766

033000243 null 8

null

 214350348 819021951

214354110 null
 033302661 null

 777512413

 987654376 null

214201469 null

Exercise: Assume table.length = 1024 and
loadFactor = 0.75. Then table will be resized,
to 2048, when size >= 768 and put is called.

1. What is the maximum number of elements that
can be stored at an index when table.length = 1024?

2. What is the average number of elements that have
been stored at each index when size = 512 and
table.length = 1024?

Implementation of the HashMapClass

For the containsKey, get, put, andremove
methods, the initial strategy is the same:

Hash key to index;

Search linked list at table [index].

public boolean containsKey(Object key) {

 Object k = maskNull(key);
 int hash = hash(k);
 int i = indexFor(hash, table.length);
 Entry e = table[i];
 while (e != null) {
 if (e.hash == hash && eq(k, e.key))
 return true;
 e = e.next;
 }
 return false;
}

The code for the put method is similar,
except we need to replace and return the old
value if there is a matching key. And before
we can insert a new key-value pair, we have
to consider resizing.

12

To rehash, the size of the table is doubled,
and then each entry from the old table is
hashed to the new table. Since each entry
includes a hash field, the hash value is not
re-calculated.

For example, suppose the old table had length 16, and the
following list at table [5]:

table [5] hash key next hash key next

-1661329691 Missy 1453462773 Jeff null

If resize() is called, the new length of table will be 32.

-1661329691 & 31 = 5

1453462773 & 31 = 21

Part of table will be:

 table [5] hash key next

 table [21] hash key next

null

null

-1661329691 Missy

1453462773 Jeff

The remove method follows the same search
through table [index] as containsKey and
put, except that there is a reference, prev,
to the entry before the entry to be removed.
To remove entry e:

if (table [index] == e)
table[index] = e.next;

else
prev.next = e.next;

Time estimates:

Let n = size, let m = table.length.

Assume the uniform hashing assumption
holds.

The average size of each list is

n / m

13

For the containsKey method,

averageTimeS(n, m) ≈ n / 2m iterations.

but n / m <= loadFactor, a constant
(assigned in the constructor)

so averageTimeS(n, m) < a constant.

averageTimeS(n, m) is constant.

Even if the uniform hashing assumption
holds, it is possible for each key to hash to
the same index. To search the list at that
index takes linear-in-n time.

So worstTimeS(n, m) is linear in n.

The same results, constant average time
and linear worst time, hold for unsuccessful
searches with

containsKey

get

put

remove

The HashIterator class

Iterate through table starting at table [length – 1]

 Not at table [0]

The put method inserts each element at the front of the linked list,
and the iterator starts at the front of a linked list, so the elements
are accessed in opposite order from insertion.

Note: Users iterate through a HashMap object by choosing a view:
entrySet(), keySet(), or values() .

Worst case for next():

Let n = size. Let m = table.length.

Suppose the iterator is currently at the
last entry in the list at table [length –1] ,
and the next entry is at table [0].

The worstTime(n, m) is ???

Exercise: Develop a main method that constructs an empty
HashMap object, studentMap, with an initial capacity of
1024. Each key will represent a student’s ID (L-number) and
each value will represent the student’s grade point average.

Insert three elements into studentMap and then develop an
enhanced for statement to print out the student ID of each
student whose grade point average is above 3.0.

14

The HashSet class: See TreeSet class

/**
 * Inserts an element into this HashSet object, unless the element
 * was already in this HashSet object before this method was
 * called. The worstTime(n, m) is O(n). If the Uniform Hashing
 * Assumption holds, averageTime(n, m) is constant.
 *
 * @param element – the element whose insertion is attempted
 * @return true – if element was inserted as a result of this call
 *
 */
public boolean add(E element)
{
 return map.put (element, PRESENT) == null;

// PRESENT is a
// dummy value-part

} // method add

