Auto Scaling

CS4230 — Distributed and Cloud Computing
Jay Urbain

Credits: AWS, www.8kmiles.com

I WIORKED ARQLMD THE
CLOCK AND FINISHED
A PROTECT THAT LWJOULD
HNORMALLY AREQGUIRZ

TEN FROGRAMMERS,

wrweew, glllbgir. omm

seam ey T opg | g

UM .. DID L JUST
ESTABLISH A NEL

| BASELIMNE EXPECTATION

THAT WILL TURKN MY

JOB INTO A TRAGIC
DEATH MARCH?

ﬂ o

IT% TIME

TOSET

SOME] um:!l
STRETCH STUFPID!

STUPID!

(1T

GOALE.

Auto Scaling with AWS

Objective:

— Ensure the number of Amazon EC2 instances increases during
demand spikes to maintain performance, and

— Decreases during demand lulls to minimize costs.

Auto Scaling allows you to scale your EC2 capacity up or
down automatically according to conditions you define.

Well suited for applications that experience hourly, daily,
or weekly variability in usage.

Understanding Scaling

Infrastructure
cost 5 - . h'
Q0 I11I.IE capaci
------------ F
I f
!
Huge Cap-ex “*——7____\
A : You lost your
: customers here

— — — Predicted Demand
Actual Demand
----- Scale up Approach
=======- Traditional scale out
Automated scaling

Lource: Amaron AWE TI me t

Auto Scaling Architcture

Usern

Lser 2
Uzer 1

B e

[Amazon Auto Scaling & Elastic Load Balancer] ELB redirects requests to same
Wb / AFF server based on

l l l Session Sticky Alporithm
Autosealed Web
Spp servers - Sl the Auta Scaled
Web/App Server s

talk to the same
6 machine

Source: www.8kmiles.com

AWS Solution Components

Solution Components
 Elastic Block Storage (EBS) — server images

« Simple Storage Service (S3) — storing objects as key
value pair

« Simple Queue Service (SQS) — queue
« Elastic Load Balancer (ELB) — load balancer

« AutoScale — for scaling servers up and down
automatically

« SimpleDB — scalable database

Solution Components - EBS

 Elastic Block Storage (EBS) — Provides block level
storage volumes for use with Amazon EC2 instances.

- EBS is well suited for applications that require a
database, file system, or access to raw block level
storage.

« Sample Use case:
— Data stores, application executables, configurations, and OS are
installed in the EBS.

Solution Components — S3

- Simple Storage Service (S3) — Provides a simple web
services interface that can be used to store /retrieve any
amount of data, at any time, from anywhere on the web.

« Sample Use case :

— Uploaded data and files, generated reports and data are stored
in S3.

Solution Components — SQS

- Simple Queue Service (SQS) — Reliable, highly scalable,
hosted queue for storing messages as they travel
between computers, i.e., EC2 instances.

« Sample Use case:

— Meta data about the files/data to be processed are put on the
queue for processing.

— Background application picks up the meta data from the SQS
and accesses and processes the data from a data store, i.e.,SS,
Simple DB, or relational database.

Solution Components —

Simple DB

- Simple DB — Highly available, scalable, and flexible non-
relational key-value data store.

« Store and query data items via web services requests.

« Sample Use case :
— Store data record by recordID.
— Store inter-application information can be stored in Simple DB.

Solution Components — ELB

 Elastic Load Balancer (ELB) - Automatically distributes
incoming application traffic across multiple Amazon EC2
iInstances.

« Detects unhealthy instances within a pool and
automatically reroutes traffic to healthy instances until
the unhealthy instances have been restored.

« Sample Use case:

— Dynamically distribute work load among Servers located in
multiple zones.

— Can use dynamically Auto Scaled EC2 instances.

Solution Components —
Auto Scaling

Auto Scaling — Automatically scale EC2 capacity up or
down according to conditions you define.

Well suited for applications that experience hourly, daily,
or weekly variability in usage.

Sample Use case:

— Dynamically scale EC2 instances up and down depending upon
current workload.

— Dynamically add new EC2 instances to replace “unhealthy”
instances.

Auto Scaling Setup

Download from EC2 API Tools (main page):

e http://aws.amazon.com/developertools? encoding=UTF
8&jiveRedirect=1

« Auto Scaling Tools
http://aws.amazon.com/developertools/2535

 CloudWatch Command Line Tools
http://aws.amazon.com/developertools/2534

« EC2 API Tools (while your there!)
http://aws.amazon.com/developertools/351

Elastic Load Balancer

elb-create-lb my-load-balapcer --headers --listener "lb-

port=80,instance-port=8080,protocol=HTTP" --availability-zones us-
u/x/-lc D\

LN

The load App server port to Add a name to your
balancer port which requests needs load balancer

to be forwarded

Launch Configuration

Just a name to the AMI (server image) to be
launched during scaling
It

'l.
.l.'l.
i
%, ,

5
".'R N
LY

launch config _

i
i
i

as-create-launch-config my—laﬁnch—mnﬁg —image-id ami—eilﬂlﬁcaa --
instance-type ml.small --key my-key-pair --group my-security-group

/ ._ /
y 7

\
i '_:.H

Instance - HE"‘:.I'FI'-';]ir and S‘EEU”-I-""'

(server] size Group (firewall) for

the new servers

Auto Scaling Group

Min and Max number of
instances to be spawned

Scale group \ / \

Mame your auto

as-create-auto-scaling-group r?iy' -as-group -—ax.rall |I|t~.r 20Nes us East—
1c —-launch-configuration my-launch-config --max-size 11 --min-size
3 --coold 80 --load-balancers my-load-balancer

\
/ \
\

iMention the launch Specify the load balancer to

which the new servers needs
created in last step) to he attached

config (the one we

Configure Triggers

Measure the avg CPU Specify the autoscale
of the autoscale group group name

\ /

as-create-or-update-trigger my-a s—tri\gger --auto-scaling-group my-as‘group
—-namespace "AWS/EC2" --measure CPUUtilization --statistic Average --
dimensions "AutoScalingGroupName= my-as-group " --period 60 --lower-
threshold 20 --upper-threshold 80 --lower-breach-increment”=-2" --upper-
hrea{:h-increr?ént 4 --breach-duration 180 \

/

/
/

;
W
Lower CPU limit is 20% and

upper CPU limit is 80%

Scale down by 2 servers and
scale up by 4 servers

CloudWatch Monitoring

Use the mon-put-metric-alarm CloudWatch command to
create an alarm for each condition under which you want
to add or remove Amazon EC2 instances (or use
Management Console).

Specify the Auto Scaling Policy that you want the alarm
to execute when that condition is met.

You can define alarms based on any metric that Amazon
CloudWatch collects. E.g. of metrics on which you can
set conditions include average CPU utilization, network
activity or disk utilization.

Auto Scaling tracks when your conditions have been met
and automatically takes the corresponding scaling action
on your behalf.

AWS Elastic Beanstalk

Elastic Beanstalk automatically handles the details of
load balancing, scaling, and application monitoring.

It's basically how Amazon competes with Google
AppEngine.

Uses AWS technologies:

— Amazon Elastic Compute Cloud (Amazon EC2)

— Amazon Simple Storage Service (Amazon S3)

— Amazon Simple Notification Service (Amazon SNS)

— Amazon CloudWatch

— Elastic Load Balancing

— Auto Scaling

Using AWS Elastic Beanstalk

Create an application, upload an application version (for example, a
Java WAR file) to AWS Elastic Beanstalk.

Provide some information about the application.

Elastic Beanstalk launches an environment and creates and
configures the AWS resources needed to run your code.

After your environment is launched, you can then manage your
environment and deploy new application versions.

Lpdate Version

Create Upload Launch Manage
Application - Version - Environment - Environment

Deploy Mew Version

Using AWS Elastic Beanstalk

You can use Java with the AWS Toolkit for Eclipse (ADT plugin).

Toolkit includes the AWS libraries, project templates, code samples,
and documentation.

Supports Java 5 or Java 6.

AWS Elastic Beanstalk supports the following container types:
— 32-bit Amazon Linux running Tomcat 6
— 64-bit Amazon Linux running Tomcat 6
— 32-bit Amazon Linux running Tomcat 7
— 64-bit Amazon Linux running Tomcat 7

There is no additional charge for AWS Elastic Beanstalk; you pay
only for the underlying AWS resources that your application
consumes

