Google BigTable

CS4230

Jay Urbain, Ph.D.
Credits:

Google Bigtable, Fay Chang, Jeffrey Dean, Sanjay
Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber
Google, Inc.

CATBERT: EVIL DIRECTOR
OF HUMAN RESOURCES

THE NEW COMPANY
HEALTH PLAN IS
GOOGLE.

FROM NOW
ON, EMPLOYEES
MUST USE GOOGLE
TO DIAGNOSE
THEIR OWN
ILLNESSES.

GUY HAS A GROWTH
ON HIS NECK.

FOR EXAMPLE, THISJ

A QUICK SEARCH

E)N MY BLACKBERR

TELLS ME ITS..

*]

A PREGNANT TERMITE
CRAWLED INTO YOUR
MOUTH AND BUILT A
HIVE IN YOUR
ESOPHAGUS.

\

AR (31

THAT

\I/ THE TREAT-J
MENT FOR

\

199

DO YOU HAVE AN
ARC WELDER
AND A BARREL OF
KEROSENE?

\

BigTable

BigTable - compressed, high performance, and proprietary data storage
system built on Google File System, Chubby Lock Service, and SSTable.

Not distributed outside Google, although access to it as part of its Google
App Engine.

Highly Scalable
— Petabytes across thousands of commodity servers.
— 1PB=1,000,000,000,000,000 B =1000°B =108
— 1M GB!

Used by diverse applications with varied demands with respect to data
size and latency:

— Web indexing, search, Google Earth, Google Reader, Google Maps,
Google Code Hosting, Google Finance, Google Analytics, etc.

30f19

BigTable Design Goals

Wide applicability

— Batch processing jobs

— Latent sensitive serving of data to end users
Scalability

— From very large to mind boggling large
High performance

— Batch and real-time

High availability

— Assume failure will occur

4 of 19

BigTable versus RDBMS

* BigTable shares many implementation strategies with high
performance database technology:

— Parallel databases
— Main-memory databases
— Column oriented databases

* BigTable does not support a full relational model.

— Simple data model
— Supports dynamic control over data layout and format
— Allows clients to reason about the locality properties

50f 19

Similar Software

Dynamo and SimpleDB — Amazon’s BigTable equivalents
Apache Accumulo - Cell-level access labels

Apache Cassandra — From Facebook, some relational
features

HBase — BigTable-like support on Hadoop
LevelDB — Google's embedded key/value store.

Big Table Data Model

Sparse, distributed, persistent, multidimensional sorted map.

Associated, arbitrary byte arrays are indexed by row, column
(string values),and timestamp string values.

Treats data as uninterrupted strings.
Multiple versions are indexed by timestamp

(row:string, column:string, time:int64) -> string

7 of 19

Overview

Timestamp facilitates versioning and garbage collection.

Tables are optimized for Google File System (GFS) by being
split into multiple tablets.

Segments of the table are split along a row chosen such that
the tablet will be ~200 MB in size.

When sizes threaten to grow beyond a specified limit, the

tablets are compressed using the BMDiff and the Zippy
compression algorithms (Snappy).

Overview (cont.)

Locations in the GFS of tablets are recorded as database entries
in multiple special tablets, which are called "META1" tablets.

META1L tablets are found by querying the single "METAD"
tablet, which typically resides on a server of its own.

Like GFS's master server, the METAO server is not generally

a bottleneck since the processor time and bandwidth necessary
to discover and transmit META1 locations is minimal and clients
aggressively cache locations to minimize queries.

Data Model

Example: Webtable

 Reverse URL as row key

* Aspects of web pages as column names

* Contents under the timestamp when they were fetched

"contents:" "anchor:cnnsi.com” "anchor:my.look.ca"

I | I 1 | N N I I
I ¢ I I * Z Z * [

Y e Y __ L _]
| " bl " | ' |

" " I " LY:T H{TTT’Y” - |- 1 3 " " " "
com.cnn.www ™. L:;I‘n{‘m..--h_. s I CNN" |- Ly CNN.com" |- g
T |

| = ‘_J_(O_____I______:________: ________ L
I | | . . |
I I I : : I

10 of 19

Data Model - Rows

Row keys are arbitrary strings
— Up to 64K, 10-100 bytes typical

Every read or write is atomic
Maintains data in lexicographic order by row key
Row range for a table is dynamically partitioned into tablets

Tablets make up the unit of distribution for load balancing

— Reads of short row ranges are efficient and require communication
with a small number of machines

11 of 19

Data Model - Rows

Exploit lexicographic ordering and tablet partitioning to
control locality for data access.

Storing pages from the same domain near each other can
make some host and domain analysis more efficient.

Example for Web table:

— Pages in the same domain are grouped together into
contiguous rows by reversing the hostname components
of the URLs. l.e.,

Use com.google.maps/index.html versus
maps.google.com/index.html.

12 of 19

Data Model - Columns

Column families

Column keys are grouped into sets called column families.

Column families form the basic unit of access control.

All data stored within a column family is usually the same type.
— Data is compressed in the same column family together.

Column family must be created before data can be stored
under any column key in that family.

After a family has been created, column keys within the family
can be used.

13 of 19

Data Model — Column Family Design

Column family design intentions:

e The number of distinct column families in a table is small
(hundreds at most)

— Note: A table may have an unbounded number of columns
* Families rarely change during operation
* Column key naming: family:qualifier
 Example: anchor:

— Each column key in the anchor family represents a single
HTML anchor

— Example: anchor:cnnsi.com
— Qualifier is the name of the referring site.

14 of 19

Data Model — Timestamps

Each cell in Bigtable can contain multiple versions of the same
data, indexed by timestamp.

* 64-bitintegers
* Assigned by Bigtable as realtime values in microseconds or
can be assigned by the client.

e Different versions are stored in decreasing timestamp order -
so the most recent versions are read first.

e Support provided for per column-family settings for garbage
collection. Example:

— Keep only the 3 most recent versions, or versions within
the past 7 days

15 of 19

API

API:
e Admin:
— Create and delete tables and column families.

— Change cluster, table, and column family metadata, e.g.,
access control.

e (Client
— Write or delete values.

— Read values from individual rows, or iterate over a subset
of the data in a table.

APl — Writing to Bigtable

Use RowMutation to perform a series of updates.

* Performs an atomic mutation to the sample Webtable: adds
one anchor to www.cnn.com and deletes a different anchor.

// Open the table

Table *T = OpenOrDie("/bigtable/web/webtable");
// Write a new anchor and delete an old anchor
RowMutation r1(T, "com.cnn.www");
r1.Set("anchor:www.c-span.org"”, "CNN");
rl.Delete("anchor:www.abc.com");

Operation op;

Apply(&op, &rl);

17 of 19

APl — Reading from Bigtable

* Use Scanner to iterate over all anchors in a row.
* (Can also iterate over multiple column families.
* Mechanisms for limiting the number of rows retrieved: anchor:*.cnn.com

Scanner scanner(T);

ScanStream *stream;

stream = scanner.FetchColumnFamily("anchor");

stream->SetReturnAllVersions();

scanner.Lookup("com.cnn.www");

for (; !stream->Done(); stream->Next()) {
printf("%s %s %lld %s\n",
scanner.RowName(),
stream->ColumnName(),
stream->MicroTimestamp(),
stream->Value()); 18 of 19

AP| — etc.

Support for single-row transactions.
— Example: atomic read-modify-write sequences

Does not support general transactions across row keys

Execution of client-supplied scripts
— Developed in a language called Sawzall

Can be used with MapReduce

19 of 19

Building Blocks

Google File System (GFS)
— Store log and data files.
A cluster management system

— Scheduling jobs, managing resources on shared machines,
dealing with machine failures, and monitoring machine
status.

Google SSTable file format to store Bigtable data

— Provides a persistent ordered immutable map from keys
to values (arbitrary strings)

Chubby Lock service

200f 19

Building Blocks - SSTable

SSTable

* Chunks of data plus an index

Persistent, immutable, sorted file of key-value pairs

Used to store Bigtable data within GFS

— Index is of block ranges (typically 64k), not values

Ops to look up data and iterate over keys

64K
block

64K
block

64K
block

SSTable

Index

21 0f 19

Building Blocks - Chubby

Chubby
» Distributed {lock/file/name} service

* Maintains namespace of directories and small files
* Five active replicas, one is master, need a majority vote to be active
e Paxos algorithm to keep replicas consistent in the face of failure.

— Uses consensus process of agreeing on one result among a group of
participants.

* Coarse-grained locks, can store small amount of data in a lock
* Can lock directory or file

* Caching

* Session management

22 of 19

Google File System

Large-scale distributed file system.
Master: responsible for metadata.

Chunk servers: responsible for reading and writing large
chunks of data.

Chunks replicated on 3 machines, master responsible for
ensuring replicas exist.

23 of 19

Tablet

* Contains some range of rows of the table

e Built out of multiple SSTables

Tablet Start:aardvark End:apple
6ak ||6ak |[eak | SSTable 6ak ||6ak |[eak | SSTable
block block block block block block

Index Index

Table

* Multiple tablets make up the table
* SSTables can be shared
 Tablets do not overlap, SSTables can overlap

Tablet Tablet
aardvark apple apple_i_pad boat

| A~/ /

SSTable SSTable SSTable SSTable

Implementation - Major components

Library is linked into every client

One master server (METAO)
— Assigns tablets to tablet servers
— Detects addition and expiration of tablet servers
— Balances tablet-server load
— Garbage collection of files in the GFS
— Schema changes

Many tablet servers (META1)
— Manages a set up tablets
— Read/write requests
— Tablet splits when they become to large (100-200MB)
— Clients communicate directly with tablet server not master
— Can be added dynamically

A Bigtable cluster stores a number of tables, each tablet contains all data
associated with a row range.

Finding a tablet

UserTable1
Other J::::::.:E:::::
METADATA e
tablets _~ »[7T
Root tablat ::::::.:“:::::::
Chubby file {18t METADATA t2hief) Gttt
::::::.:"::::::: ¢E§?[T?_t’_'_e_'_l

b - ————— -

27 of 19

Tablet Serving

* Tablet servers manage tablets, multiple tablets per server.
Each tablet is 100-200 MBs

— Each tablet lives at only one server.
— Tablet server splits tablets that get too big.

 Master responsible for load balancing and fault tolerance

— Use Chubby to monitor health of tablet servers, restart
failed servers.

— GFS replicates data. Prefer to start tablet server on same
machine that the data is already at

28 of 19

Editing a table

Mutations are logged, then applied to an in-memory version
Logfile stored in GFS

Insert

Insert

Delete

Insert

Delete

Insert

Tablet

J Memtable

apple_i_pad

boat

v

SSTable

SSTable

29 of 19

Recovering a tablet

Tablet server (META1) reads its metadata from the
METADATA table.

Metadata contains the list of SSTables that comprise a table
and a set of redo pointers into any commit logs.

The server reads the indices of the SSTables into memory,
and reconstructs the memtable by applying all of the
updates that have committed since the redo points.

When a write op arrives at a table server, the server checks
that it is well-formed and that the sender is authorized to
perform the mutation.

Authorization is checked with Chubby

After changes are committed, its contents are inserted into
the memtable.

Compactions

* Minor compaction — convert the memtable into an
SSTable

— Reduce memory usage
— Reduce log traffic on restart
* Merging compaction
— Reduce number of SSTables
— Good place to apply policy “keep only N versions”
* Major compaction
— Merging compaction that results in only one SSTable
— No deletion records, only live data

310f19

Locality Groups

* Group column families together into an SSTable

— Avoid mingling data, i.e., page contents and page
metadata

— Can keep some groups all in memory
* Can compress locality groups
* Bloom Filters on locality groups — avoid searching SSTable

32 0f 19

Microbenchmarks

Number of 1000-byte values read/written per second.
Table shows the rate per tablet server.

of Tablet Es'ﬂrrm “
Experiment -. S

random reads
random reads (mem)
random writes
sequential reads
sequential writes
SCANs

33 0f 19

Number of 1000-byte values read/written per second.
Graph shows the aggregate rate.

-
SAMg o SCANS

E — M- random reads (mem)

T a6 J—— random wies _ -
= — &— saguentizl rads ="

= —— saguential writas P

‘= IM - +— random reads

£ -

= A
B 1M =X
: e

= e
- 100 200 300 400 500

Number of tablet servers

34 of 19

Application at Google

Project Table size | Compression | # Cells | # Column | # Locality % in Latency-
name (TB) ratio (billions) | Families Groups memory | sensitive?
Crawl 200 1 1% |00 16 5 O No
Crawl 50 33% 200 2 2 (% No

Coogle Analvtics 20 29% L0 1 l (e Yes
Coogle Analvtics 200 14% mi | l (% Yes
Google Base 2 3% L0 29 3 1 5% Yes
Google Earth 0.5 Hd% b 7 2 33% Yes
Google Earth 70 _ 0 g 3 0% No
Orkur 0 — 0.0 8 5 1% Yes
Fersonalized Search 4 47% 4] 03 I % Yes

350f 19

Lessons learned

Interesting point- only implement some of the requirements,
since the last is probably not needed

Many types of failure possible
Big systems need proper systems-level monitoring
Value simple designs

36 of 19

