
Google	
  BigTable	
  	
  
	
  

CS4230	
  
Jay	
  Urbain,	
  Ph.D.	
  

Credits:	
  
Google	
  Bigtable,	
  Fay	
  Chang,	
  Jeffrey	
  Dean,	
  Sanjay	
  
Ghemawat,	
  Wilson	
  C.	
  Hsieh,	
  Deborah	
  A.	
  Wallach,	
  Mike	
  
Burrows,	
  Tushar	
  Chandra,	
  Andrew	
  Fikes,	
  Robert	
  E.	
  Gruber	
  
Google,	
  Inc.	
  





3	
  of	
  19	
  
	
  

BigTable	
  
•  BigTable	
  -­‐	
  compressed,	
  high	
  performance,	
  and	
  proprietary	
  data	
  storage	
  

system	
  built	
  on	
  Google	
  File	
  System,	
  Chubby	
  Lock	
  Service,	
  and	
  SSTable.	
  	
  

•  Not	
  distributed	
  outside	
  Google,	
  although	
  access	
  to	
  it	
  as	
  part	
  of	
  its	
  Google	
  
App	
  Engine.	
  

•  Highly	
  Scalable	
  
–  Petabytes	
  across	
  thousands	
  of	
  commodity	
  servers.	
  
–  1	
  PB	
  =	
  1,000,000,000,000,000	
  B	
  =	
  10005	
  B	
  =	
  1015	
  B	
  
–  1M	
  GB!	
  
	
  

•  Used	
  by	
  diverse	
  applicaZons	
  with	
  varied	
  demands	
  with	
  respect	
  to	
  data	
  
size	
  and	
  latency:	
  
–  Web	
  indexing,	
  search,	
  Google	
  Earth,	
  Google	
  Reader,	
  Google	
  Maps,	
  

Google	
  Code	
  HosZng,	
  Google	
  Finance,	
  Google	
  AnalyZcs,	
  etc.	
  



4	
  of	
  19	
  
	
  

BigTable	
  Design	
  Goals	
  
•  Wide	
  applicability	
  

–  Batch	
  processing	
  jobs	
  
–  Latent	
  sensiZve	
  serving	
  of	
  data	
  to	
  end	
  users	
  

•  Scalability	
  
–  From	
  very	
  large	
  to	
  mind	
  boggling	
  large	
  

•  High	
  performance	
  
–  Batch	
  and	
  real-­‐Zme 	
  	
  

•  High	
  availability	
  
–  Assume	
  failure	
  will	
  occur	
  



5	
  of	
  19	
  
	
  

BigTable	
  versus	
  RDBMS	
  
•  BigTable	
  shares	
  many	
  implementaZon	
  strategies	
  with	
  high	
  

performance	
  database	
  technology:	
  
–  Parallel	
  databases	
  
–  Main-­‐memory	
  databases	
  
–  Column	
  oriented	
  databases	
  

	
  
•  BigTable	
  does	
  not	
  support	
  a	
  full	
  rela/onal	
  model.	
  

–  Simple	
  data	
  model	
  
–  Supports	
  dynamic	
  control	
  over	
  data	
  layout	
  and	
  format	
  
–  Allows	
  clients	
  to	
  reason	
  about	
  the	
  locality	
  properZes	
  



Similar	
  So]ware	
  
•  Dynamo	
  and	
  SimpleDB	
  –	
  Amazon’s	
  BigTable	
  equivalents	
  
•  Apache	
  Accumulo	
  -­‐	
  Cell-­‐level	
  access	
  labels	
  
•  Apache	
  Cassandra	
  —	
  From	
  Facebook,	
  some	
  relaZonal	
  

features	
  
•  HBase	
  —	
  BigTable-­‐like	
  support	
  on	
  Hadoop	
  	
  
•  LevelDB	
  —	
  Google's	
  embedded	
  key/value	
  store.	
  



7	
  of	
  19	
  
	
  

Big	
  Table	
  Data	
  Model	
  
•  Sparse,	
  distributed,	
  persistent,	
  mulZdimensional	
  sorted	
  map.	
  
•  Associated,	
  arbitrary	
  byte	
  arrays	
  are	
  indexed	
  by	
  row,	
  column	
  

(string	
  values),and	
  1mestamp	
  string	
  values.	
  
•  Treats	
  data	
  as	
  uninterrupted	
  strings.	
  
•  MulZple	
  versions	
  are	
  indexed	
  by	
  Zmestamp	
  

	
  
(row:string,	
  column:string,	
  7me:int64)	
  -­‐>	
  string	
  



Overview	
  
•  Timestamp	
  facilitates	
  	
  versioning	
  and	
  garbage	
  collecZon.	
  	
  
•  Tables	
  are	
  opZmized	
  for	
  Google	
  File	
  System	
  (GFS)	
  by	
  being	
  

split	
  into	
  mulZple	
  tablets.	
  
•  Segments	
  of	
  the	
  table	
  are	
  split	
  along	
  a	
  row	
  chosen	
  such	
  that	
  

the	
  tablet	
  will	
  be	
  ~200	
  MB	
  in	
  size.	
  	
  
•  When	
  sizes	
  threaten	
  to	
  grow	
  beyond	
  a	
  specified	
  limit,	
  the	
  

tablets	
  are	
  compressed	
  using	
  the	
  BMDiff	
  and	
  the	
  Zippy	
  
compression	
  algorithms	
  (Snappy).	
  



Overview	
  (cont.)	
  
•  LocaZons	
  in	
  the	
  GFS	
  of	
  tablets	
  are	
  recorded	
  as	
  database	
  entries	
  

in	
  mulZple	
  special	
  tablets,	
  which	
  are	
  called	
  "META1"	
  tablets.	
  	
  
•  META1	
  tablets	
  are	
  found	
  by	
  querying	
  the	
  single	
  "META0"	
  

tablet,	
  which	
  typically	
  resides	
  on	
  a	
  server	
  of	
  its	
  own.	
  
•  Like	
  GFS's	
  master	
  server,	
  the	
  META0	
  server	
  is	
  not	
  generally	
  

a	
  bokleneck	
  since	
  the	
  processor	
  Zme	
  and	
  bandwidth	
  necessary	
  
to	
  discover	
  and	
  transmit	
  META1	
  locaZons	
  is	
  minimal	
  and	
  clients	
  
aggressively	
  cache	
  locaZons	
  to	
  minimize	
  queries.	
  



10	
  of	
  19	
  
	
  

Data	
  Model	
  
Example:	
  Webtable	
  
•  Reverse	
  URL	
  as	
  row	
  key	
  
•  Aspects	
  of	
  web	
  pages	
  as	
  column	
  names	
  
•  Contents	
  under	
  the	
  Zmestamp	
  when	
  they	
  were	
  fetched	
  



11	
  of	
  19	
  
	
  

Data	
  Model	
  -­‐	
  Rows	
  
•  Row	
  keys	
  are	
  arbitrary	
  strings	
  

–  Up	
  to	
  64K,	
  10-­‐100	
  bytes	
  typical	
  
•  Every	
  read	
  or	
  write	
  is	
  atomic	
  
•  Maintains	
  data	
  in	
  lexicographic	
  order	
  by	
  row	
  key	
  
•  Row	
  range	
  for	
  a	
  table	
  is	
  dynamically	
  parZZoned	
  into	
  tablets	
  
•  Tablets	
  make	
  up	
  the	
  unit	
  of	
  distribuZon	
  for	
  load	
  balancing	
  

–  Reads	
  of	
  short	
  row	
  ranges	
  are	
  efficient	
  and	
  require	
  communicaZon	
  
with	
  a	
  small	
  number	
  of	
  machines	
  



12	
  of	
  19	
  
	
  

Data	
  Model	
  -­‐	
  Rows	
  
•  Exploit	
  lexicographic	
  ordering	
  and	
  tablet	
  parZZoning	
  to	
  

control	
  locality	
  for	
  data	
  access.	
  
•  Storing	
  pages	
  from	
  the	
  same	
  domain	
  near	
  each	
  other	
  can	
  

make	
  some	
  host	
  and	
  domain	
  analysis	
  more	
  efficient.	
  
•  Example	
  for	
  Web	
  table:	
  

–  Pages	
  in	
  the	
  same	
  domain	
  are	
  grouped	
  together	
  into	
  
conZguous	
  rows	
  by	
  reversing	
  the	
  hostname	
  components	
  
of	
  the	
  URLs.	
  I.e.,	
  
Use	
  com.google.maps/index.html	
  versus	
  
maps.google.com/index.html.	
  



13	
  of	
  19	
  
	
  

Data	
  Model	
  -­‐	
  Columns	
  
Column	
  families	
  
•  Column	
  keys	
  are	
  grouped	
  into	
  sets	
  called	
  column	
  families.	
  
•  Column	
  families	
  form	
  the	
  basic	
  unit	
  of	
  access	
  control.	
  
•  All	
  data	
  stored	
  within	
  a	
  column	
  family	
  is	
  usually	
  the	
  same	
  type.	
  

–  Data	
  is	
  compressed	
  in	
  the	
  same	
  column	
  family	
  together.	
  
•  Column	
  family	
  must	
  be	
  created	
  before	
  data	
  can	
  be	
  stored	
  

under	
  any	
  column	
  key	
  in	
  that	
  family.	
  
•  A]er	
  a	
  family	
  has	
  been	
  created,	
  column	
  keys	
  within	
  the	
  family	
  

can	
  be	
  used.	
  



14	
  of	
  19	
  
	
  

Data	
  Model	
  –	
  Column	
  Family	
  Design	
  

Column	
  family	
  design	
  intenZons:	
  
•  The	
  number	
  of	
  disZnct	
  column	
  families	
  in	
  a	
  table	
  is	
  small	
  

(hundreds	
  at	
  most)	
  
–  Note:	
  A	
  table	
  may	
  have	
  an	
  unbounded	
  number	
  of	
  columns	
  

•  Families	
  rarely	
  change	
  during	
  operaZon	
  
•  Column	
  key	
  naming:	
  family:qualifier	
  
•  Example:	
  anchor:	
  	
  

–  Each	
  column	
  key	
  in	
  the	
  anchor	
  family	
  represents	
  a	
  single	
  
HTML	
  anchor	
  

–  Example:	
  anchor:cnnsi.com	
  
–  Qualifier	
  is	
  the	
  name	
  of	
  the	
  referring	
  site.	
  



15	
  of	
  19	
  
	
  

Data	
  Model	
  –	
  Timestamps	
  
Each	
  cell	
  in	
  Bigtable	
  can	
  contain	
  mulZple	
  versions	
  of	
  the	
  same	
  

data,	
  indexed	
  by	
  Zmestamp.	
  
•  64-­‐bit	
  integers	
  
•  Assigned	
  by	
  Bigtable	
  as	
  realZme	
  values	
  in	
  microseconds	
  or	
  

can	
  be	
  assigned	
  by	
  the	
  client.	
  
•  Different	
  versions	
  are	
  stored	
  in	
  decreasing	
  Zmestamp	
  order	
  	
  -­‐

so	
  the	
  most	
  recent	
  versions	
  are	
  read	
  first.	
  
•  Support	
  provided	
  for	
  per	
  column-­‐family	
  sepngs	
  for	
  garbage	
  

collecZon.	
  Example:	
  	
  
–  Keep	
  only	
  the	
  3	
  most	
  recent	
  versions,	
  or	
  versions	
  within	
  
the	
  past	
  7	
  days	
  



16	
  of	
  19	
  
	
  

API	
  
API:	
  
•  Admin:	
  

–  Create	
  and	
  delete	
  tables	
  and	
  column	
  families.	
  
–  Change	
  cluster,	
  table,	
  and	
  column	
  family	
  metadata,	
  e.g.,	
  
access	
  control.	
  

•  Client	
  
– Write	
  or	
  delete	
  values.	
  
–  Read	
  values	
  from	
  individual	
  rows,	
  or	
  iterate	
  over	
  a	
  subset	
  
of	
  the	
  data	
  in	
  a	
  table.	
  

	
  



17	
  of	
  19	
  
	
  

API	
  –	
  WriZng	
  to	
  Bigtable	
  
Use	
  RowMuta1on	
  to	
  perform	
  a	
  series	
  of	
  updates.	
  
•  Performs	
  an	
  atomic	
  muta/on	
  to	
  the	
  sample	
  Webtable:	
  adds	
  

one	
  anchor	
  to	
  www.cnn.com	
  and	
  deletes	
  a	
  different	
  anchor.	
  
	
  

//	
  Open	
  the	
  table	
  
Table	
  *T	
  =	
  OpenOrDie("/bigtable/web/webtable");	
  
//	
  Write	
  a	
  new	
  anchor	
  and	
  delete	
  an	
  old	
  anchor	
  
RowMutaZon	
  r1(T,	
  "com.cnn.www");	
  
r1.Set("anchor:www.c-­‐span.org",	
  "CNN");	
  
r1.Delete("anchor:www.abc.com");	
  
OperaZon	
  op;	
  
Apply(&op,	
  &r1);	
  



18	
  of	
  19	
  
	
  

API	
  –	
  Reading	
  from	
  Bigtable	
  
•  Use	
  Scanner	
  to	
  iterate	
  over	
  all	
  anchors	
  in	
  a	
  row.	
  
•  Can	
  also	
  iterate	
  over	
  mulZple	
  column	
  families.	
  
•  Mechanisms	
  for	
  limiZng	
  the	
  number	
  of	
  rows	
  retrieved:	
  anchor:*.cnn.com	
  

Scanner	
  scanner(T);	
  
ScanStream	
  *stream;	
  
stream	
  =	
  scanner.FetchColumnFamily("anchor");	
  
stream-­‐>SetReturnAllVersions();	
  
scanner.Lookup("com.cnn.www");	
  
for	
  (;	
  !stream-­‐>Done();	
  stream-­‐>Next())	
  {	
  

prinx("%s	
  %s	
  %lld	
  %s\n",	
  
scanner.RowName(),	
  
stream-­‐>ColumnName(),	
  
stream-­‐>MicroTimestamp(),	
  
stream-­‐>Value());	
  

}	
  



19	
  of	
  19	
  
	
  

API	
  –	
  etc.	
  
•  Support	
  for	
  single-­‐row	
  transacZons.	
  	
  

–  Example:	
  atomic	
  read-­‐modify-­‐write	
  sequences	
  	
  
•  Does	
  not	
  support	
  general	
  transac/ons	
  across	
  row	
  keys	
  
•  ExecuZon	
  of	
  client-­‐supplied	
  scripts	
  

–  Developed	
  in	
  a	
  language	
  called	
  Sawzall	
  
•  Can	
  be	
  used	
  with	
  MapReduce	
  
	
  



20	
  of	
  19	
  
	
  

	
  Building	
  Blocks	
  
•  Google	
  File	
  System	
  (GFS)	
  	
  

–  Store	
  log	
  and	
  data	
  files.	
  
•  A	
  cluster	
  management	
  system	
  

–  Scheduling	
  jobs,	
  managing	
  resources	
  on	
  shared	
  machines,	
  
dealing	
  with	
  machine	
  failures,	
  and	
  monitoring	
  machine	
  
status.	
  

•  Google	
  SSTable	
  file	
  format	
  to	
  store	
  Bigtable	
  data	
  
–  Provides	
  a	
  persistent	
  ordered	
  immutable	
  map	
  from	
  keys	
  
to	
  values	
  (arbitrary	
  strings)	
  

•  Chubby	
  Lock	
  service	
  



21	
  of	
  19	
  
	
  

	
  Building	
  Blocks	
  -­‐	
  SSTable	
  
SSTable	
  
•  Persistent,	
  immutable,	
  sorted	
  file	
  of	
  key-­‐value	
  pairs	
  
•  Used	
  to	
  store	
  Bigtable	
  data	
  within	
  GFS	
  
•  Chunks	
  of	
  data	
  plus	
  an	
  index	
  	
  

–  Index	
  is	
  of	
  block	
  ranges	
  (typically	
  64k),	
  not	
  values	
  
•  Ops	
  to	
  look	
  up	
  data	
  and	
  iterate	
  over	
  keys	
  

Index	
  

64K	
  
block	
  

64K	
  
block	
  

64K	
  
block	
  

SSTable	
  



22	
  of	
  19	
  
	
  

	
  Building	
  Blocks	
  -­‐	
  Chubby	
  
Chubby	
  
•  Distributed	
  {lock/file/name}	
  service	
  
•  Maintains	
  namespace	
  of	
  directories	
  and	
  small	
  files	
  
•  Five	
  acZve	
  replicas,	
  one	
  is	
  master,	
  need	
  a	
  majority	
  vote	
  to	
  be	
  acZve	
  
•  Paxos	
  algorithm	
  to	
  keep	
  replicas	
  consistent	
  in	
  the	
  face	
  of	
  failure.	
  

–  Uses	
  consensus	
  process	
  of	
  agreeing	
  on	
  one	
  result	
  among	
  a	
  group	
  of	
  
parZcipants.	
  

•  Coarse-­‐grained	
  locks,	
  can	
  store	
  small	
  amount	
  of	
  data	
  in	
  a	
  lock	
  
•  Can	
  lock	
  directory	
  or	
  file	
  
•  Caching	
  
•  Session	
  management	
  



23	
  of	
  19	
  
	
  

Google	
  File	
  System	
  
•  Large-­‐scale	
  distributed	
  file	
  system.	
  
•  Master:	
  responsible	
  for	
  metadata.	
  
•  Chunk	
  servers:	
  responsible	
  for	
  reading	
  and	
  wriZng	
  large	
  

chunks	
  of	
  data.	
  
•  Chunks	
  replicated	
  on	
  3	
  machines,	
  master	
  responsible	
  for	
  

ensuring	
  replicas	
  exist.	
  



24	
  of	
  19	
  
	
  

Tablet	
  	
  
•  Contains	
  some	
  range	
  of	
  rows	
  of	
  the	
  table	
  
•  Built	
  out	
  of	
  mulZple	
  SSTables	
  

Index	
  

64K	
  
block	
  

64K	
  
block	
  

64K	
  
block	
  

SSTable	
  

Index	
  

64K	
  
block	
  

64K	
  
block	
  

64K	
  
block	
  

SSTable	
  

Tablet	
   Start:aardvark	
   End:apple	
  



25	
  of	
  19	
  
	
  

Table	
  

•  MulZple	
  tablets	
  make	
  up	
  the	
  table	
  
•  SSTables	
  can	
  be	
  shared	
  
•  Tablets	
  do	
  not	
  overlap,	
  SSTables	
  can	
  overlap	
  

SSTable	
   SSTable	
   SSTable	
   SSTable	
  

Tablet	
  

aardvark	
   apple	
  
Tablet	
  

apple_i_pad	
   boat	
  



ImplementaZon	
  -­‐	
  Major	
  components	
  
•  Library	
  is	
  linked	
  into	
  every	
  client	
  
•  One	
  master	
  server	
  (META0)	
  

–  Assigns	
  tablets	
  to	
  tablet	
  servers	
  
–  Detects	
  addiZon	
  and	
  expiraZon	
  of	
  tablet	
  servers	
  
–  Balances	
  tablet-­‐server	
  load	
  
–  Garbage	
  collecZon	
  of	
  files	
  in	
  the	
  GFS	
  
–  Schema	
  changes	
  

•  Many	
  tablet	
  servers	
  (META1)	
  
–  Manages	
  a	
  set	
  up	
  tablets	
  
–  Read/write	
  requests	
  
–  Tablet	
  splits	
  when	
  they	
  become	
  to	
  large	
  (100-­‐200MB)	
  
–  Clients	
  communicate	
  directly	
  with	
  tablet	
  server	
  not	
  master	
  
–  Can	
  be	
  added	
  dynamically	
  

•  A	
  Bigtable	
  cluster	
  stores	
  a	
  number	
  of	
  tables,	
  each	
  tablet	
  contains	
  all	
  data	
  
associated	
  with	
  a	
  row	
  range.	
  



27	
  of	
  19	
  
	
  

Finding	
  a	
  tablet	
  



28	
  of	
  19	
  
	
  

Tablet	
  Serving	
  
•  Tablet	
  servers	
  manage	
  tablets,	
  mulZple	
  tablets	
  per	
  server.	
  

Each	
  tablet	
  is	
  100-­‐200	
  MBs	
  
–  Each	
  tablet	
  lives	
  at	
  only	
  one	
  server.	
  
–  Tablet	
  server	
  splits	
  tablets	
  that	
  get	
  too	
  big.	
  
	
  

•  Master	
  responsible	
  for	
  load	
  balancing	
  and	
  fault	
  tolerance	
  
–  Use	
  Chubby	
  to	
  monitor	
  health	
  of	
  tablet	
  servers,	
  restart	
  
failed	
  servers.	
  

–  GFS	
  replicates	
  data.	
  Prefer	
  to	
  start	
  tablet	
  server	
  on	
  same	
  
machine	
  that	
  the	
  data	
  is	
  already	
  at	
  



29	
  of	
  19	
  
	
  

EdiZng	
  a	
  table	
  
•  MutaZons	
  are	
  logged,	
  then	
  applied	
  to	
  an	
  in-­‐memory	
  version	
  
•  Logfile	
  stored	
  in	
  GFS	
  

SSTable	
   SSTable	
  

Tablet	
  

apple_i_pad	
   boat	
  

Insert	
  

Insert	
  

Delete	
  

Insert	
  

Delete	
  

Insert	
  

Memtable	
  



30	
  of	
  19	
  
	
  

Recovering	
  a	
  tablet	
  
1.  Tablet	
  server	
  (META1)	
  reads	
  its	
  metadata	
  from	
  the	
  

METADATA	
  table.	
  
2.  Metadata	
  contains	
  the	
  list	
  of	
  SSTables	
  that	
  comprise	
  a	
  table	
  

and	
  a	
  set	
  of	
  redo	
  pointers	
  into	
  any	
  commit	
  logs.	
  
3.  The	
  server	
  reads	
  the	
  indices	
  of	
  the	
  SSTables	
  into	
  memory,	
  

and	
  reconstructs	
  the	
  memtable	
  by	
  applying	
  all	
  of	
  the	
  
updates	
  that	
  have	
  commiked	
  since	
  the	
  redo	
  points.	
  

4.  When	
  a	
  write	
  op	
  arrives	
  at	
  a	
  table	
  server,	
  the	
  server	
  checks	
  
that	
  it	
  is	
  well-­‐formed	
  and	
  that	
  the	
  sender	
  is	
  authorized	
  to	
  
perform	
  the	
  mutaZon.	
  

5.  AuthorizaZon	
  is	
  checked	
  with	
  Chubby	
  
6.  A]er	
  changes	
  are	
  commiked,	
  its	
  contents	
  are	
  inserted	
  into	
  

the	
  memtable.	
  



31	
  of	
  19	
  
	
  

CompacZons	
  

•  Minor	
  compacZon	
  –	
  convert	
  the	
  memtable	
  into	
  an	
  
SSTable	
  
–  Reduce	
  memory	
  usage	
  	
  
–  Reduce	
  log	
  traffic	
  on	
  restart	
  

•  Merging	
  compacZon	
  
–  Reduce	
  number	
  of	
  SSTables	
  
–  Good	
  place	
  to	
  apply	
  policy	
  “keep	
  only	
  N	
  versions”	
  

•  Major	
  compacZon	
  
– Merging	
  compacZon	
  that	
  results	
  in	
  only	
  one	
  SSTable	
  
–  No	
  deleZon	
  records,	
  only	
  live	
  data	
  



32	
  of	
  19	
  
	
  

Locality	
  Groups	
  
•  Group	
  column	
  families	
  together	
  into	
  an	
  SSTable	
  

–  Avoid	
  mingling	
  data,	
  i.e.,	
  page	
  contents	
  and	
  page	
  
metadata	
  

–  Can	
  keep	
  some	
  groups	
  all	
  in	
  memory	
  
•  Can	
  compress	
  locality	
  groups	
  
•  Bloom	
  Filters	
  on	
  locality	
  groups	
  –	
  avoid	
  searching	
  SSTable	
  



33	
  of	
  19	
  
	
  

Microbenchmarks	
  
Number	
  of	
  1000-­‐byte	
  values	
  read/wriken	
  per	
  second.	
  
Table	
  shows	
  the	
  rate	
  per	
  tablet	
  server.	
  



34	
  of	
  19	
  
	
  

Number	
  of	
  1000-­‐byte	
  values	
  read/wriken	
  per	
  second.	
  
Graph	
  shows	
  the	
  aggregate	
  rate.	
  



35	
  of	
  19	
  
	
  

ApplicaZon	
  at	
  Google	
  



36	
  of	
  19	
  
	
  

Lessons	
  learned	
  
•  InteresZng	
  point-­‐	
  only	
  implement	
  some	
  of	
  the	
  requirements,	
  

since	
  the	
  last	
  is	
  probably	
  not	
  needed	
  
•  Many	
  types	
  of	
  failure	
  possible	
  
•  Big	
  systems	
  need	
  proper	
  systems-­‐level	
  monitoring	
  
•  Value	
  simple	
  designs	
  


