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Abstract

Sequential pattern mining is an important data min-
ing problem with broad applications. It is challenging
since one may need to examine a combinatorially explo-
sive number of possible subsequence patterns. Most of the
previously developed sequential pattern mining methods
follow the methodology of �����	� 
���� which may substantially
reduce the number of combinations to be examined. How-
ever, �
���	� 
���� still encounters problems when a sequence
database is large and/or when sequential patterns to be
mined are numerous and/or long.

In this paper, we propose a novel sequential pattern
mining method, called PrefixSpan (i.e., Prefix-projected
Sequential pattern mining), which explores prefix-
projection in sequential pattern mining. PrefixSpan
mines the complete set of patterns but greatly reduces the
efforts of candidate subsequence generation. Moreover,
prefix-projection substantially reduces the size of projected
databases and leads to efficient processing. Our per-
formance study shows that PrefixSpan outperforms both
the �
����� 
���� -based GSP algorithm and another recently
proposed method, FreeSpan, in mining large sequence
databases.

1 Introduction

Sequential pattern mining, which discovers frequent
subsequences as patterns in a sequence database, is an im-
portant data mining problem with broad applications, in-
cluding the analyses of customer purchase behavior, Web
access patterns, scientific experiments, disease treatments,
natural disasters, DNA sequences, and so on.
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The sequential pattern mining problem was first intro-
duced by Agrawal and Srikant in [2]: Given a set of se-
quences, where each sequence consists of a list of elements
and each element consists of a set of items, and given
a user-specified min support threshold, sequential pattern
mining is to find all of the frequent subsequences, i.e., the
subsequences whose occurrence frequency in the set of se-
quences is no less than min support.

Many studies have contributed to the efficient mining
of sequential patterns or other frequent patterns in time-
related data, e.g., [2, 11, 9, 10, 3, 8, 5, 4]. Almost all
of the previously proposed methods for mining sequen-
tial patterns and other time-related frequent patterns are
�
���	� 
���� -like, i.e., based on the �
����� 
���� property proposed
in association mining [1], which states the fact that any
super-pattern of a nonfrequent pattern cannot be frequent.

Based on this heuristic, a typical �
���	� 
���� -like method
such as GSP [11] adopts a multiple-pass, candidate-
generation-and-test approach in sequential pattern mining.
This is outlined as follows. The first scan finds all of the
frequent items which form the set of single item frequent
sequences. Each subsequent pass starts with a seed set of
sequential patterns, which is the set of sequential patterns
found in the previous pass. This seed set is used to gen-
erate new potential patterns, called candidate sequences.
Each candidate sequence contains one more item than a
seed sequential pattern, where each element in the pattern
may contain one or multiple items. The number of items in
a sequence is called the length of the sequence. So, all the
candidate sequences in a pass will have the same length.
The scan of the database in one pass finds the support for
each candidate sequence. All of the candidates whose sup-
port in the database is no less than min support form the
set of the newly found sequential patterns. This set then
becomes the seed set for the next pass. The algorithm ter-
minates when no new sequential pattern is found in a pass,
or no candidate sequence can be generated.

Similar to the analysis of �
����� 
��	� frequent pattern min-



ing method in [7], one can observe that the �����	� 
���� -like
sequential pattern mining method, though reduces search
space, bears three nontrivial, inherent costs which are in-
dependent of detailed implementation techniques.� Potentially huge set of candidate sequences. Since

the set of candidate sequences includes all the pos-
sible permutations of the elements and repetition of
items in a sequence, the �
����� 
��	� -based method may
generate a really large set of candidate sequences
even for a moderate seed set. For example, if there
are

�������
frequent sequences of length-1, such as ���
	�� ,�
����� , . . . , ��� 	������ � , an �
���	� 
���� -like algorithm will gen-

erate
������������������� 	��������������� � ���� "!�!���#����

candidate
sequences, where the first term is derived from the set�
��	$��	�� , ����	�� � � , . . . , ����	���	������$� , ��� � ��	$� , �
� � � � � , . . . ,�
� 	������ � 	������ � , and the second term is derived from the
set ��%&� 	 �"��'�� , ��%(� 	 ��)�'�� , . . . , ��%&� ����� � 	������ '�� .� Multiple scans of databases. Since the length
of each candidate sequence grows by one at
each database scan, to find a sequential pat-
tern *"%(�"+$,$'-%(�"+$,$'-%(�"+$,$'-%(�"+$,$'-%(�"+$,$'/. , the �����	� 
���� -based
method must scan the database at least 15 times.� Difficulties at mining long sequential patterns. A
long sequential pattern must grow from a combina-
tion of short ones, but the number of such candi-
date sequences is exponential to the length of the
sequential patterns to be mined. For example, sup-
pose there is only a single sequence of length 100,�
� 	 �"��0�0�0�� 	���� � , in the database, and the min support
threshold is 1 (i.e., every occurring pattern is fre-
quent), to (re-)derive this length-100 sequential pat-
tern, the �
����� 
��	� -based method has to generate 100
length-1 candidate sequences,

�����1�2������� 	����3������ ��- 4��!�#��
length-2 candidate sequences, 576�8$89;: ���<�����=����
length-3 candidate sequences1, . . . . Obvi-

ously, the total number of candidate sequences to be

generated is greater than > 	����?A@ 	 5 6�8$8B : �DC 	����FE �HG��� ) � .
In many applications, it is not unusual that one may en-

counter a large number of sequential patterns and long se-
quences, such as in DNA analysis or stock sequence analy-
sis. Therefore, it is important to re-examine the sequential
pattern mining problem to explore more efficient and scal-
able methods.

Based on our analysis, both the thrust and the bottle-
neck of an �
����� 
��	� -based sequential pattern mining method
come from its step-wise candidate sequence generation
and test. Can we develop a method which may absorb
the spirit of �
���	� 
���� but avoid or substantially reduce the
expensive candidate generation and test?

1Notice that IKJ�LNM O$LPM does cut a substantial amount of search space.
Otherwise, the number of length-3 candidate sequences would have been6�8$8RQS6�8$8RQS6�8$8UTV6�8-8RQS6�8$8RQ1W$WUTYXAZ
Z3[�\
\3[�\
]^ [�_ `ba�c 6�d�6 cAe 8$8 .

With this motivation, we first examined whether the
FP-tree structure [7], recently proposed in frequent pat-
tern mining, can be used for mining sequential patterns.
The FP-tree structure explores maximal sharing of com-
mon prefix paths in the tree construction by reordering
the items in transactions. However, the items (or sub-
sequences) containing different orderings cannot be re-
ordered or collapsed in sequential pattern mining. Thus
the FP-tree structures so generated will be huge and can-
not benefit mining.

As a subsequent study, we developed a sequential min-
ing method [6], called FreeSpan (i.e., Frequent pattern-
projected Sequential pattern mining). Its general idea
is to use frequent items to recursively project sequence
databases into a set of smaller projected databases and
grow subsequence fragments in each projected database.
This process partitions both the data and the set of frequent
patterns to be tested, and confines each test being con-
ducted to the corresponding smaller projected database.
Our performance study shows that FreeSpan mines the
complete set of patterns and is efficient and runs con-
siderably faster than the �����	� 
���� -based GSP algorithm.
However, since a subsequence may be generated by
any substring combination in a sequence, projection in
FreeSpan has to keep the whole sequence in the origi-
nal database without length reduction. Moreover, since the
growth of a subsequence is explored at any split point in a
candidate sequence, it is costly.

In this study, we develop a novel sequential pattern
mining method, called PrefixSpan (i.e., Prefix-projected
Sequential pattern mining). Its general idea is to examine
only the prefix subsequences and project only their cor-
responding postfix subsequences into projected databases.
In each projected database, sequential patterns are grown
by exploring only local frequent patterns. To further im-
prove mining efficiency, two kinds of database projections
are explored: level-by-level projection and bi-level projec-
tion. Moreover, a main-memory-based pseudo-projection
technique is developed for saving the cost of projection and
speeding up processing when the projected (sub)-database
and its associated psuedo-projection processing structure
can fit in main memory. Our performance study shows
that bi-level projection has better performance when the
database is large, and pseudo-projection speeds up the pro-
cessing substantially when the projected databases can fit
in memory. PrefixSpan mines the complete set of pat-
terns and is efficient and runs considerably faster than both
�
���	� 
���� -based GSP algorithm and FreeSpan.

The remaining of the paper is organized as follows. In
Section 2, we define the sequential pattern mining problem
and illustrate the ideas of our previously developed pat-
tern growth method FreeSpan. The PrefixSpan method
is developed in Section 3. The experimental and perfor-
mance results are presented in Section 4. In Section 5, we
discuss its relationships with related works. We summarize
our study and point out some research issues in Section 6.



2 Problem Definition and FreeSpan

In this section, we first define the problem of sequential
pattern mining, and then illustrate our recently proposed
method, FreeSpan, using an example.

Let
� � *�� 	 � �(� � 0�0�0 � ���
. be a set of all items. An item-

set is a subset of items. A sequence is an ordered list of
itemsets. A sequence � is denoted by ��� 	 �����	�
���
�(� , where
��� is an itemset, i.e., ����� �

for
���������

. ��� is also called
an element of the sequence, and denoted as %�� 	 �4���
�	������' ,
where � � is an item, i.e., � ��! �

for
�"�$#%�'&

. For
brevity, the brackets are omitted if an element has only
one item. That is, element %(�
' is written as � . An item can
occur at most once in an element of a sequence, but can oc-
cur multiple times in different elements of a sequence. The
number of instances of items in a sequence is called the
length of the sequence. A sequence with length

�
is called

an
�
-sequence. A sequence ) � ��� 	 �"�*�
�	���+��� is called a

subsequence of another sequence , � ��+3	�+ � �
�	�
+ � � and
, a super sequence of ) , denoted as ).-/, , if there exist
integers

�0��� 	21 � � 1 �
�	� 1 � � �/&
such that � 	 � +��
3 ,� � �Y+ ��4 , . . . , � � � + �
5 .

A sequence database 6 is a set of tuples ���	�(7 � ��� ,
where �	��7 is a sequence id and � is a sequence. A tu-
ple ���	�(7 � ��� is said to contain a sequence ) , if ) is a
subsequence of � , i.e., )8-9� . The support of a se-
quence ) in a sequence database 6 is the number of tu-
ples in the database containing ) , i.e., �
:+;<;>=@?
ACBU%�) ' �ED*����
��7 � ��� D %����	�(7 � ����!/6 '�F %�)/-G��'�. D . It can be denoted
as �	:<;+;H=@?
A�%()�' if the sequence database is clear from the
context. Given a positive integer I as the support thresh-
old, a sequence ) is called a (frequent) sequential pattern
in sequence database 6 if the sequence is contained by at
least I tuples in the database, i.e., �
:+;<;>=@?
A B %()�'KJLI . A
sequential pattern with length

�
is called an

�
-pattern.

Example 1 (Running example) Let our running database
be sequence database 6 given in Table 1 and min support
= 2. The set of items in the database is *3� � + � , � 7 �NM���O
�QP . .

Sequence id Sequence
10 ���
%(�"+$,-'$%(�",$'�7
%(, O '��
20 ��%(�R7"'�, %(+$,$'-%(� M '��
30 ��% M	O '$%(�"+$'-%(7 O '�,$+-�
40 � MCP %&� O '�,$+$,$�

Table 1. A sequence database

A sequence ���
%(�"+$,$'-%(�",$'�74%&, O '�� has five elements: %(�"' ,%(�"+$,-' , %(�",$' , %�7�' and %&, O ' , where items � and , appear more
than once respectively in different elements. It is also a

!
-

sequence since there are 9 instances appearing in that se-
quence. Item � happens three times in this sequence, so it
contributes 3 to the length of the sequence. However, the
whole sequence ���
%(�"+$,$'-%(�",$'�74%&, O '�� contributes only one
to the support of ���"� . Also, sequence �
�
%(+$,$'�7 O � is a sub-
sequence of ���
%(�"+$,-'$%(�",$'�7
%(, O '�� . Since both sequences 10

and 30 contain subsequence � � �/%&�"+$'�,$� , � is a sequential
pattern of length 3 (i.e., S -pattern).

Problem Statement. Given a sequence database and a
min support threshold, the problem of sequential pattern
mining is to find the complete set of sequential patterns in
the database.

In Section 1, we outlined the �
���	� 
���� -like method
GSP [11]. To improve the performance of sequential pat-
tern mining, a FreeSpan algorithm is developed in our
recent study [6]. Its major ideas are illustrated in the fol-
lowing example.

Example 2 (FreeSpan) Given the database 6 and
min support in Example 1, FreeSpan first scans 6 , col-
lects the support for each item, and finds the set of frequent
items. Frequent items are listed in support descending or-
der (in the form of �TA M	&VU �
:+;<;>=@?
A ) as below,

f list � � U  4� + U3 4� , U3 4� 7 U S ��M0U S ��OWU S
According to f list, the complete set of sequential pat-

terns in 6 can be divided into 6 disjoint subsets: (1) the
ones containing only item � , (2) the ones containing item+ but containing no items after + in f list, (3) the ones con-
taining item , but no items after , in f list, and so on, and
finally, (6) the ones containing item

O
.

The subsets of sequential patterns can be mined by con-
structing projected databases. Infrequent items, such asP

in this example, are removed from construction of pro-
jected databases. The mining process is detailed as fol-
lows.

� Finding sequential patterns containing only item� . By scanning sequence database once, the only two
sequential patterns containing only item � , ���"� and�����"� , are found.� Finding sequential patterns containing item + but
no item after + in f list. This can be achieved by
constructing the * + . -projected database. For a se-
quence ) in 6 containing item + , a subsequence
)YX is derived by removing from ) all items af-
ter + in f list. )YX is inserted into *3+�. -projected
database. Thus, * +�. -projected database contains four
sequences: ���
%(�"+$'���� , ����+-��� , ��%&�"+$'�+$� and ����+-� . By
scanning the projected database once more, all se-
quential patterns containing item + but no item after +
in f list are found. They are ��+-� , �
�"+$� , �
+$�"� , ��%(�"+$'�� .� Finding other subsets of sequential patterns. Other
subsets of sequential patterns can be found similarly,
by constructing corresponding projected databases
and mining them recursively.

Note that * +�. -, * , . -, . . . , * O . -projected databases are
constructed simultaneously during one scan of the original



sequence database. All sequential patterns containing only
item � are also found in this pass.

This process is performed recursively on projected-
databases. Since FreeSpan projects a large sequence
database recursively into a set of small projected sequence
databases based on the currently mined frequent sets, the
subsequent mining is confined to each projected database
relevant to a smaller set of candidates. Thus, FreeSpan is
more efficient than GSP.

The major cost of FreeSpan is to deal with projected
databases. If a pattern appears in each sequence of a
database, its projected database does not shrink (except for
the removal of some infrequent items). For example, the* O . -projected database in this example is the same as the
original sequence database, except for the removal of in-
frequent item

P
. Moreover, since a length-

#
subsequence

may grow at any position, the search for length- % # � � '
candidate sequence will need to check every possible com-
bination, which is costly.

3 PrefixSpan: Mining Sequential Patterns
by Prefix Projections

In this section, we introduce a new pattern-growth
method for mining sequential patterns, called PrefixSpan.
Its major idea is that, instead of projecting sequence
databases by considering all the possible occurrences of
frequent subsequences, the projection is based only on fre-
quent prefixes because any frequent subsequence can al-
ways be found by growing a frequent prefix. In Section
3.1, the PrefixSpan idea and the mining process are illus-
trated with an example. The algorithm PrefixSpan is then
presented and justified in Section 3.2. To further improve
its efficiency, two optimizations are proposed in Section
3.3 and Section 3.4, respectively.

3.1 Mining sequential patterns by prefix projec-
tions: An example

Since items within an element of a sequence can be
listed in any order, without loss of generality, we assume
they are listed in alphabetical order. For example, the se-
quence in 6 with Sequence id 10 in our running example is
listed as �
�
%(�"+$,$'-%(�",$' 7
%&, O '�� in stead of ���
%&+$�",$'$%&,$�"' 7
% O ,$'�� .
With such a convention, the expression of a sequence is
unique.

Definition 1 (Prefix, projection, and postfix) Suppose
all the items in an element are listed alphabetically.
Given a sequence ) � � M 	 M ���	�
� M �4� , a sequence , �� M X 	 ��M X � �
�	� M X� � % & � � ' is called a prefix of ) if and only
if (1)

M X? � M ? for %(� � & E � ' ; (2)
M X� � M � ; and (3) all the

items in % M � E M X� ' are alphabetically after those in
M X� .

Given sequences ) and , such that , is a subsequence
of ) , i.e., , -G) . A subsequence )*X of sequence ) (i.e.,

) X - ) ) is called a projection of ) w.r.t. prefix , if and
only if (1) )YX has prefix , and (2) there exists no proper
super-sequence ) X X of )YX (i.e., )YXY-/) X X but )YX �� )YX X ) such
that )YX X is a subsequence of ) and also has prefix , .

Let )YX � � M 	 M � �	�
� M � � be the projection of ) w.r.t.
prefix , � � M 	 M �*�
�	� M ��� 	 M X� � % & � � ' . Sequence� � � M X X� M ��� 	 �	�
� M � � is called the postfix of ) w.r.t. prefix
, , denoted as � � )��@, , where

M X X� � % M � E M X� ' .2 We also
denote ) � , � � .

If , is not a subsequence of ) , both projection and post-
fix of ) w.r.t. , are empty.

For example, ���"� , �
�"��� , �
�
%(�"+$'�� and �
�
%(�"+$,$'�� are pre-
fixes of sequence ���
%(�"+$,$'-%(�",$'�74%&, O '�� , but neither ���"+$�
nor �
�4%&+$,$'�� is considered as a prefix. ��%(�"+$,$'-%(�",$' 7
%&, O '��
is the postfix of the same sequence w.r.t. prefix ���"� ,�/% +$,$'-%(�",$' 7
%&, O '�� is the postfix w.r.t. prefix ���"�"� , and�/% ,$'$%&�",$' 7
%(, O '�� is the postfix w.r.t. prefix ���"+$� .
Example 3 (PrefixSpan) For the same sequence
database 6 in Table 1 with

& � � �	:<; � C , sequential
patterns in 6 can be mined by a prefix-projection method
in the following steps.
Step 1: Find length-1 sequential patterns. Scan 6 once
to find all frequent items in sequences. Each of these
frequent items is a length-1 sequential pattern. They are���"� U" , �
+$� U� , ��,-� U" , ��7"� U S , � M � U S , and � O � U S , where� ;
� A�A M ? � � U , =@: � A represents the pattern and its associated
support count.
Step 2: Divide search space. The complete set of se-
quential patterns can be partitioned into the following six
subsets according to the six prefixes: (1) the ones having
prefix ���"� ; . . . ; and (6) the ones having prefix � O � .
Step 3: Find subsets of sequential patterns. The sub-
sets of sequential patterns can be mined by constructing
corresponding projected databases and mine each recur-
sively. The projected databases as well as sequential pat-
terns found in them are listed in Table 2, while the mining
process is explained as follows.

First, let us find sequential patterns having prefix���"� . Only the sequences containing ���"� should be col-
lected. Moreover, in a sequence containing �
�"� , only
the subsequence prefixed with the first occurrence of���"� should be considered. For example, in sequence�/% M
O '$%&�"+$'$%�7 O '�,$+$� , only the subsequence ��% +-'$%(7 O '�,-+$�
should be considered for mining sequential patterns hav-
ing prefix ���"� . Notice that % +$' means that the last el-
ement in the prefix, which is � , together with + , form
one element. As another example, only the subsequence�/%&�"+$,$'$%&�",$' 7
%(, O '�� of sequence �
�
%(�"+$,$'-%(�",$' 7
%&, O '�� should
be considered.

Sequences in 6 containing ���"� are projected w.r.t. �
���
to form the �
��� -projected database, which consists of four

2If 	�
 
� is not empty, the postfix is also denoted as
��
items in 	�
 
��� 	 ��� X������ 	���� .
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Table 2. Projected databases and sequential patterns
postfix sequences: ��%(�"+$,$'-%(�",$' 7
%&, O '�� , ��% 7"'�,3%&+$,$'$%&� M '�� ,��% +$'$%�7 O '�,$+$� and ��% O '�,$+$,$� . By scanning �
��� -projected
database once, all the length-2 sequential patterns having
prefix ���"� can be found. They are: ���"�"� U C , ���"+$� U  

,��%&�"+$'�� U C , ���",$� U3 , �
�R7�� U C , and ��� O � U C .
Recursively, all sequential having patterns prefix ���"�

can be partitioned into 6 subsets: (1) those having prefix���"�"� , (2) those having prefix ���"+$� , . . . , and finally, (6) those
having prefix ��� O � . These subsets can be mined by con-
structing respective projected databases and mining each
recursively as follows.

The ���"�"� -projected database consists of only one
non-empty (postfix) subsequences having prefix ���"�"� :��% +$,$'-%(�",$' 7
%&, O '�� . Since there is no hope to generate any
frequent subsequence from a single sequence, the process-
ing of �����"� -projected database terminates.

The ���"+$� -projected database consists of three postfix se-
quences: �$% ,-'$%(�",$'�7
%(, O '�� , �$% ,$'��"� , and ��,$� . Recursively
mining ���"+$� -projected database returns four sequential pat-
terns: ��% ,$'�� , ��% ,$'��"� , �
��� , and �
,$� (i.e., �
�4%&+$,$'�� , �
�4%&+$,$'���� ,���"+$�"� , and ���"+$,$� .)��%&�"+$'�� projected database contains only two sequences:��% ,$'$%&�",$' 7
%(, O '�� and ��%�7 O '�,$+$� , which leads to the finding
of the following sequential patterns having prefix ��%(�"+$'�� :��,-� , ��7"� , � O � , and ��7",$� .

The ���",$� -, ���R7"� - and �
� O � - projected databases can be
constructed and recursively mined similarly. The sequen-
tial patterns found are shown in Table 2.

Similarly, we can find sequential patterns having
prefix ��+$� , ��,$� , ��7"� , � M � and � O � , respectively, by con-
structing �
+$� -, �
,$� - ��7"� -, � M � - and � O � -projected databases
and mining them respectively. The projected databases as
well as the sequential patterns found are shown in Table 2.

The set of sequential patterns is the collection of pat-
terns found in the above recursive mining process. One
can verify that it returns exactly the same set of sequential
patterns as what GSP and FreeSpan do.

3.2 PrefixSpan: Algorithm and correctness

Now, let us justify the correctness and completeness of
the mining process in Section 3.1.

Based on the concept of prefix, we have the following

lemma on the completeness of partitioning the sequential
pattern mining problem.

Lemma 3.1 (Problem partitioning) Let ) be a length-
�

% � J � ' sequential pattern and *
,U	 � , � � 0�0�0 � , � . be the
set of all length- % �4� � ' sequential patterns having prefix
) . The complete set of sequential patterns having prefix
) , except for ) itself, can be divided into

&
disjoint sub-

sets. The
�� �!

subset % � � �W� & ' is the set of sequential
patterns having prefix , � . Here, we regard " as a default
sequential pattern for every sequence database.

Based on Lemma 3.1, PrefixSpan partitions the prob-
lem recursively. That is, each subset of sequential pat-
terns can be further divided when necessary. This forms a
divide-and-conquer framework. To mine the subsets of se-
quential patterns, PrefixSpan constructs the correspond-
ing projected databases.

Definition 2 (Projected database) Let ) be a sequen-
tial pattern in sequence database 6 . The ) -projected
database, denoted as 6 D # , is the collection of postfixes of
sequences in 6 w.r.t. prefix ) .

To collect counts in projected databases, we have the
following definition.

Definition 3 (Support count in projected database) Let
) be a sequential pattern in sequence database 6 , and ,
be a sequence having prefix ) . The support count of , in
) -projected database 6 D # , denoted as �	:<;+;H=@?
A B�$ % %�,U' , is
the number of sequences � in 6 D # such that , - )"� � .

Please note that, in general, �
:+;<;>=@?
A B�$ % %�,U' �
�
:+;<;>=@?
A B�$ % %�, �<)�' . For example, �
:+;<;>=@?
A B %
��%(�R7"'���' � �
holds in our running example. However, ��%&�R7�'���� ���"� � ��7��
and �
:+;<;>=@?
A B�$ ��&�� %
��7"��' � S .

We have the following lemma on projected databases.

Lemma 3.2 (Projected database) Let ) and , be two se-
quential patterns in sequence database 6 such that ) is a
prefix of , .

1. 6 D '2� %(6 D # ' D ' ;



2. for any sequence � having prefix ) , �	:<;+;H=@?
A B % � ' ��	:<;+;H=@?
A B�$ % % � ' ; and

3. The size of ) -projected database cannot exceed that
of 6 .

Based on the above reasoning, we have the algorithm of
PrefixSpan as follows.

Algorithm 1 (PrefixSpan)

Input: A sequence database 6 , and the minimum support
threshold

& � � �	:<;
Output: The complete set of sequential patterns

Method: Call PrefixSpan %
��� ����� 6�' .
Subroutine PrefixSpan %() ����� 6 D # '
Parameters: ) : a sequential pattern;

�
: the length of ) ;

6 D # : the ) -projected database, if ) �� ��� ; otherwise,
the sequence database 6 .

Method:

1. Scan 6 D # once, find the set of frequent items + such
that

(a) + can be assembled to the last element of ) to
form a sequential pattern; or

(b) �
+$� can be appended to ) to form a sequential
pattern.

2. For each frequent item + , append it to ) to form a
sequential pattern ) X , and output ) X ;

3. For each )YX , construct )YX -projected database 6 D # � ,
and call PrefixSpan %�)YX ����� ��� 6 D # � ' .

Analysis. The correctness and completeness of the algo-
rithm can be justified based on Lemma 3.1 and Lemma
3.2, as shown in Theorem 3.1 later. Here, we analyze the
efficiency of the algorithm as follows.� No candidate sequence needs to be generated

by PrefixSpan. Unlike �
���	� 
���� -like algorithms,
PrefixSpan only grows longer sequential patterns
from the shorter frequent ones. It does not generate
nor test any candidate sequence nonexistent in a pro-
jected database. Comparing with GSP, which gen-
erates and tests a substantial number of candidate se-
quences, PrefixSpan searches a much smaller space.� Projected databases keep shrinking. As indi-
cated in Lemma 3.2, a projected database is smaller
than the original one because only the postfix sub-
sequences of a frequent prefix are projected into a
projected database. In practice, the shrinking fac-
tors can be significant because (1) usually, only a
small set of sequential patterns grow quite long in

a sequence database, and thus the number of se-
quences in a projected database will become quite
small when prefix grows; and (2) projection only
takes the postfix portion with respect to a prefix. No-
tice that FreeSpan also employs the idea of pro-
jected databases. However, the projection there often
takes the whole string (not just postfix) and thus the
shrinking factor is much less than that of PrefixSpan.� The major cost of PrefixSpan is the construc-
tion of projected databases. In the worst case,
PrefixSpan constructs a projected database for ev-
ery sequential pattern. If there are a good number of
sequential patterns, the cost is non-trivial. In Section
3.3 and Section 3.4, interesting techniques are devel-
oped, which dramatically reduces the number of pro-
jected databases.

Theorem 3.1 (PrefixSpan) A sequence ) is a sequential
pattern if and only if PrefixSpan says so.

3.3 Scaling up pattern growth by bi-level projec-
tion

As analyzed before, the major cost of PrefixSpan is
to construct projected databases. If the number and/or
the size of projected databases can be reduced, the perfor-
mance of sequential pattern mining can be improved sub-
stantially. In this section, a bi-level projection scheme is
proposed to reduce the number and the size of projected
databases.

Before introducing the method, let us examine the fol-
lowing example.

Example 4 Let us re-examine mining sequential patterns
in sequence database 6 in Table 1. The first step is the
same: Scan 6 to find the length-1 sequential patterns: ����� ,��+-� , ��,-� , ��7�� , � M � and � O � .

At the second step, instead of constructing projected
databases for each length-1 sequential pattern, we con-
struct a

< � <
lower triangular matrix

�
, as shown in Table

3.�
2�

(4, 2, 2) 1	
(4, 2, 1) (3, 3, 2) 3�
(2, 1, 1) (2, 2, 0) (1, 3, 0) 0�
(1, 2, 1) (1, 2, 0) (1, 2, 0) (1, 1, 0) 0�
(2, 1, 1) (2, 2, 0) (1, 2, 1) (1, 1, 1) (2, 0, 1) 1� � 	 � � �

Table 3. The S-matrix.

The matrix
�

registers the supports of all the length-
2 sequences which are assembled using length-1 sequen-
tial patterns. A cell at the diagonal line has one counter.
For example,

��� , � ,�� � S indicates sequence ��,$,-� ap-
pears in three sequences in 6 . Other cells have three



counters respectively. For example,
��� � � ,�� � %  
� C ��� '

means �
:+;<;>=@?
A�B %
�
��,-��' �  
, �	:<;+;H=@?
A�B %
��,$�"��' �;C and

�	:<;+;H=@?
A B %
��%&�",$'���' � �
. Since the information in cell��� , � � � is symmetric to that in

��� � � , � , a triangle matrix
is sufficient. This matrix is called an S-matrix.

By scanning sequence database 6 the second time, the
S-matrix can be filled up, as shown in Table 3. All the
length-2 sequential patterns can be identified from the ma-
trix immediately.

For each length-2 sequential pattern ) , construct
) -projected database. For example, ���"+$� is iden-
tified as a length-2 sequential pattern by S-matrix.
The ���"+$� -projected database contains three sequences:��% ,$'$%&�",$'$%&, O '�� , ��% ,-'��"� , and ��,$� . By scanning it once, three
frequent items are found: ���"� , ��,-� and ��% ,$'�� . Then, a
S � S S-matrix for ���"+$� -projected database is constructed,
as shown in Table 4.�

0	
(1, 0, 1) 1� 	��
(
�
, 2,

�
) (

�
, 1,

�
)

�
� 	 � 	��

Table 4. The S-matrix in ���"+$� -projected database.

Since there is only one cell with support 2, only one
length-2 pattern ��% ,$'��"� can be generated and no further
projection is needed. Notice that " means that it is not
possible to generate such a pattern. So, we do not need to
look at the database.

To mine the complete set of sequential patterns, other
projected databases for length-2 sequential patterns should
be constructed. It can be checked that such a bi-level pro-
jection method produces the exactly same set of sequen-
tial patterns as shown in Example 3. However, in Exam-
ple 3, to find the complete set of 53 sequential patterns,
53 projected databases are constructed. In this example,
only projected databases for length-2 sequential patterns
are needed. In total, only 22 projected databases are con-
structed by bi-level projection.

Now, let us justify the mining process by bi-level pro-
jection.

Definition 4 (S-matrix, or sequence-match matrix) Let
) be a length-

�
sequential pattern, and )*X 	 , )YX � , . . . , ) X� be

all of length- % �U� � ' sequential patterns having prefix )
within ) -projected database. The S-matrix of ) -projected
database, denoted as

��� ) X? � )YX� � % ��� � � � �E& ' , is
defined as follows.

1.
��� )YX? � ) X? � contains one counter. If the last element of
) X? has only one item � , i.e. ) X? � ��)*�
� , the counter
registers the support of sequence ��) X? �
� (i.e., �Q)*�>�4� )
in ) -projected database. Otherwise, the counter is set
to " ;

2.
��� ) X? � ) X� � % � � � 1 � � & ' is in the form of%�� ��� ��� ' , where � ,

�
and

�
are three counters.

� If the last element in )YX� has only one item � , i.e.
) X� � ��)*�
� , counter � registers the support of
sequence ��) X? �
� in ) -projected database. Other-
wise, counter � is set to " ;� If the last element in )YX? has only one item � , i.e.
) X? � ��)���� , counter

�
registers the support of

sequence ��) X� ��� in ) -projected database. Other-
wise, counter

�
is set to " ;� If the last elements in )YX? and )YX� have the same

number of items, counter
�

registers the support
of sequence ) X X in ) -projected database, where
sequence )YX X is )YX? but inserting into the last ele-
ment of )YX? the item in the last element of ) X� but
not in that of ) X? . Otherwise, counter

�
is set to

" .

Lemma 3.3 Given a length-
�

sequential pattern ) .

1. The S-matrix can be filled up after two scans of ) -
projected database; and

2. A length- % � � C ' sequence , having prefix ) is a
sequential pattern if and only if the S-matrix in ) -
projected database says so.

Lemma 3.3 ensures the correctness of bi-level projec-
tion. The next question becomes “do we need to include
every item in a postfix in the projected databases?”

Let us consider the ���",$� -projected database in Example
4. The S-matrix in Table 3 tells that ��� 7"� is a sequential
pattern but �
, 7"� is not. According to the �
����� 
���� property
[1], ���", 7"� and any super-sequence of it can never be a se-
quential pattern. So, based on the matrix, we can exclude
item 7 from �
��,-� -projected database. This is the 3-way
�
���	� 
���� checking to prune items for the efficient construc-
tion of projected databases. The principle is stated as fol-
lows.

Optimization 1 (Item pruning in projected database
by 3-way �
����� 
��	� checking) The 3-way �
����� 
��	� checking
should be employed to prune items in the construction
of projected databases. To construct the ) -projected
database, where ) is a length-

�
sequential pattern, let

M
be

the last element of ) and ) X be the prefix of ) such that
) � )YX>� M .
� If ) X@��%(�
' is not frequent, then item � can be excluded

from projection.3� Let
M X be formed by substituting any item in

M
by � .

If )YX>� M X is not frequent, then item � can be excluded

3For example, suppose


	�� � is not frequent. Item

�
can be excluded

from construction of


	�� � -projected database.



from the first element of postfixes if that element is a
superset of

M
.4

This optimization applies the 3-way �
���	� 
���� checking to
reduce projected databases further. Only fragments of se-
quences necessary to grow longer patterns are projected.

3.4 Pseudo-Projection

The major cost of PrefixSpan is projection, i.e., form-
ing projected databases recursively. Here, we propose
a pseudo-projection technique which reduces the cost of
projection substantially when a projected database can be
held in main memory.

By examining a set of projected databases, one can ob-
serve that postfixes of a sequence often appear repeatedly
in recursive projected databases. In Example 3, sequence���
%&��+-,$'$%&��,-' 7
%(, O '�� has postfixes ��%(�"+$,$'-%(�",$'�74%&, O '�� and��% ,$'$%&�",$' 7
%(, O '�� as projections in ���"� - and ���"+$� -projected
databases, respectively. They are redundant pieces of se-
quences. If the sequence database/projected database can
be held in main memory, such redundancy can be avoided
by pseudo-projection.

The method goes as follows. When the database can
be held in main memory, instead of constructing a physi-
cal projection by collecting all the postfixes, one can use
pointers referring to the sequences in the database as a
pseudo-projection. Every projection consists of two pieces
of information: pointer to the sequence in database and
offset of the postfix in the sequence.

For example, suppose the sequence database 6 in Ta-
ble 1 can be held in main memory. When constructing���"� -projected database, the projection of sequence � 	 ����
%&��+-,$'$%&��,-' 7
%(, O '�� consists two pieces: a pointer to � 	 and
offset set to C . The offset indicates that the projection starts
from position 2 in the sequence, i.e., postfix %(�"+$,-'$%(�",$'�7 .
Similarly, the projection of � 	 in ���"+$� -projected database
contains a pointer to � 	 and offset set to

 
, indicating the

postfix starts from item , in ��	 .
Pseudo-projection avoids physically copying postfixes.

Thus, it is efficient in terms of both running time and
space. However, it is not efficient if the pseudo-projection
is used for disk-based accessing since random access
disk space is very costly. Based on this observation,
PrefixSpan always pursues pseudo-projection once the
projected databases can be held in main memory. Our ex-
perimental results show that such an integrated solution,
disk-based bi-level projection for disk-based processing
and pseudo-projection when data can fit into main mem-
ory, is always the clear winner in performance.

4For example, suppose

�	 ��� � � � is not frequent. To construct
�	 ��� � � � -projected database, sequence


�	 �
� � � 	 � ��� � should be projected
to

�� 	 � ��� � . The first

�
can be omitted. Please note that we must include

the second
�
. Otherwise, we may fail to find pattern


�	 ��� � � � � and those
having it as a prefix.

4 Experimental Results and Performance
Study

In this section, we report our experimental results on the
performance of PrefixSpan in comparison with GSP and
FreeSpan. It shows that PrefixSpan outperforms other
previously proposed methods and is efficient and scalable
for mining sequential patterns in large databases.

All the experiments are performed on a 233MHz Pen-
tium PC machine with 128 megabytes main memory, run-
ning Microsoft Windows/NT. All the methods are imple-
mented using Microsoft Visual C++ 6.0.

We compare performance of four methods as follows.

� GSP. The GSP algorithm was implemented as de-
scribed in [11].� FreeSpan. As reported in [6], FreeSpan with
alternative level projection is more efficient than
FreeSpan with level-by-level projection. In this pa-
per, FreeSpan with alternative level projection is
used.� PrefixSpan-1. PrefixSpan-1 is PrefixSpan with
level-by-level projection, as described in Section 3.2.� PrefixSpan-2. PrefixSpan-2 is PrefixSpan with
bi-level projection, as described in Section 3.3.

The synthetic datasets we used for our experiments
were generated using standard procedure described in [2].
The same data generator has been used in most studies on
sequential pattern mining, such as [11, 6]. We refer readers
to [2] for more details on the generation of data sets.

We test the four methods on various datasets. The re-
sults are consistent. Limited by space, we report here only
the results on dataset

� ������� 6 �<��� . In this data set, the
number of items is set to

���������
, and there are

�����������
sequences in the data set. The average number of items
within elements is set to 8 (denoted as

���
). The average

number of elements in a sequence is set to 8 (denoted as
6 � ). There are a good number of long sequential patterns
in it at low support thresholds.

The experimental results of scalability with support
threshold are shown in Figure 1. When the support
threshold is high, there are only a limited number of
sequential patterns, and the length of patterns is short,
the four methods are close in terms of runtime. How-
ever, as the support threshold decreases, the gaps be-
come clear. Both FreeSpan and PrefixSpan win GSP.
PrefixSpan methods are more efficient and more scal-
able than FreeSpan, too. Since the gaps among
FreeSpan and GSP are clear, we focus on performance
of various PrefixSpan techniques in the remaining of this
section.

As shown in Figure 1, the performance curves of
PrefixSpan-1 and PrefixSpan-2 are close when sup-



Figure 1. PrefixSpan,
FreeSpan and GSP on data
set

� ��� ��� 6 �+� � .

Figure 2. PrefixSpan and
PrefixSpan (pseudo-proj) on
data set

� ������� 6 �<��� .

Figure 3. PrefixSpan and
PrefixSpan (pseudo-proj) on
large data set

� �	# ��� 6 �+� � .

port threshold is not low. When the support thresh-
old is low, since there are many sequential patterns,
PrefixSpan-1 requires a major effort to generate pro-
jected databases. Bi-level projection can leverage the prob-
lem efficiently. As can be seen from Figure 2, the increase
of runtime for PrefixSpan-2 is moderate even when the
support threshold is pretty low.

Figure 2 also shows that using pseudo-projections for
the projected databases that can be held in main memory
improves efficiency of PrefixSpan further. As can be seen
from the figure, the performance of level-by-level and bi-
level pseudo-projections are close. Bi-level one catches up
with level-by-level one when support threshold is very low.
When the saving of less projected databases overcomes the
cost of for mining and filling the S-matrix, bi-level projec-
tion wins. That verifies our analysis of level-by-level and
bi-level projection.

Since pseudo-projection improves performance when
the projected database can be held in main memory, a re-
lated question becomes: “can such a method be extended
to disk-based processing?” That is, instead of doing phys-
ical projection and saving the projected databases in hard
disk, should we make the projected database in the form
of disk address and offset? To explore such an alternative,
we pursue a simulation test as follows.

Let each sequential read, i.e., reading bytes in a data
file from the beginning to the end, cost 1 unit of I/O.
Let each random read, i.e., reading data according to its
offset in the file, cost

� 0 # unit of I/O. Also, suppose a
write operation cost

� 0 # I/O. Figure 3 shows the I/O costs
of PrefixSpan-1 and PrefixSpan-2 as well as of their
pseudo-projection variations over data set

� �	# ��� 6 �+� �
(where

� �	#
means 1 million sequences in the data

set). PrefixSpan-1 and PrefixSpan-2 win their pseudo-
projection variations clearly. It can also be observed that
bi-level projection wins level-by-level projection as the
support threshold becomes low. The huge number of ran-
dom reads in disk-based pseudo-projections is the perfor-
mance killer when the database is too big to fit into main

memory.

Figure 4. Scalability of PrefixSpan.

Figure 4 shows the scalability of PrefixSpan-1 and
PrefixSpan-2 with respect to the number of sequences.
Both methods are linearly scalable. Since the support
threshold is set to

� 0 C � �
, PrefixSpan-2 performs better.

In summary, our performance study shows that
PrefixSpan is more efficient and scalable than FreeSpan
and GSP, whereas FreeSpan is faster than GSP when
the support threshold is low, and there are many long pat-
terns. Since PrefixSpan-2 uses bi-level projection to dra-
matically reduce the number of projections, it is more effi-
cient than PrefixSpan-1 in large databases with low sup-
port threshold. Once the projected databases can be held in
main memory, pseudo-projection always leads to the most
efficient solution. The experimental results are consistent
with our theoretical analysis.

5 Discussions

As supported by our analysis and performance study,
both PrefixSpan and FreeSpan are faster than GSP, and
PrefixSpan is also faster than FreeSpan. Here, we
summarize the factors contributing to the efficiency of
PrefixSpan, FreeSpan and GSP as follows.



� Both PrefixSpan and FreeSpan are pattern-
growth methods, their searches are more focused
and thus efficient. Pattern-growth methods try to
grow longer patterns from shorter ones. Accordingly,
they divide the search space and focus only on
the subspace potentially supporting further pattern
growth at a time. Thus, their search spaces are
focused and are confined by projected databases.
A projected database for a sequential pattern )
contains all and only the necessary information
for mining sequential patterns that can be grown
from ) . As mining proceeds to long sequential
patterns, projected databases become smaller and
smaller. In contrast, GSP always searches in the
original database. Many irrelevant sequences have
to be scanned and checked, which adds to the
unnecessarily heavy cost.� Prefix-projected pattern growth is more elegant
than frequent pattern-guided projection. Com-
paring with frequent pattern-guided projection, em-
ployed in FreeSpan, prefix-projected pattern growth
is more progressive. Even in the worst case,
PrefixSpan still guarantees that projected databases
keep shrinking and only takes care postfixes. When
mining in dense databases, FreeSpan cannot gain
much from projections, whereas PrefixSpan can cut
both the length and the number of sequences in pro-
jected databases dramatically.� The Apriori property is integrated in bi-level pro-
jection PrefixSpan. The Apriori property is the
essence of the �
����� 
��	� -like methods. Bi-level projec-
tion in PrefixSpan applies the Apriori property in the
pruning of projected databases. Based on this prop-
erty, bi-level projection explores the 3-way checking
to determine whether a sequential pattern can poten-
tially lead to a longer pattern and which items should
be used to assemble longer patterns. Only fruit-
ful portions of the sequences are projected into the
new databases. Furthermore, 3-way checking is effi-
cient since only corresponding cells in 6 -matrix are
checked, while no further assembling is needed.

6 Conclusions

In this paper, we have developed a novel, scalable, and
efficient sequential mining method, called PrefixSpan. Its
general idea is to examine only the prefix subsequences
and project only their corresponding postfix subsequences
into projected databases. In each projected database, se-
quential patterns are grown by exploring only local fre-
quent patterns. To further improve mining efficiency,
two kinds of database projections are explored: level-by-
level projection and bi-level projection, and an optimiza-
tion technique which explores psuedo-projection is de-
veloped. Our systematic performance study shows that

PrefixSpan mines the complete set of patterns and is effi-
cient and runs considerably faster than both �
����� 
���� -based
GSP algorithm and FreeSpan. Among different varia-
tions of PrefixSpan, bi-level projection has better per-
formance at disk-based processing, and psuedo-projection
has the best performance when the projected sequence
database can fit in main memory.

PrefixSpan represents a new and promising method-
ology at efficient mining of sequential patterns in large
databases. It is interesting to extend it towards mining
sequential patterns with time constraints, time windows
and/or taxonomy, and other kinds of time-related knowl-
edge. Also, it is important to explore how to further de-
velop such a pattern growth-based sequential pattern min-
ing methodology for effectively mining DNA databases.
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