Deriving the normal equation for linear regression \|

Jay Urbain
References:

- https://en.wikipedia.org/wiki/Linear regression (https://en.wikipedia.org/wiki/Linear regression) [show]
- Eli Bendersky

Given the hypothesis function:
$h_{\theta}(x)=\theta_{1} x_{1}+\ldots+\theta_{n} x_{n}$
We would like to minimize the least-squared error cost function:
$J\left(\theta_{0 \ldots n}\right)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}$
Representing the hypothesis function in matrix form, where $\theta_{0} \mid$ and $x \mid$ are vectors:
$h_{\theta}(x)=\theta_{0}^{T} x \mid$
Updating the cost function to be in matrix form:
$J(\theta)=\frac{1}{2 m}\left(\theta_{0} X-y\right)^{T}\left(\theta_{0} X-y\right)$
Dropping $\left.\frac{1}{2 m} \right\rvert\,$ since we're comparing a derivitive of 0 , and rearranging terms:
$J(\theta)=\left(\left(\theta_{0} X\right)^{T}-y^{T}\right)\left(X \theta_{0}-y\right)$
Note: Since $(X \theta \mid$ and $y)$ are vectors, we can multiply them in different orders provided the dimensions are correct.
$J(\theta)=\left(X \theta_{0}\right)^{T} X \theta-2\left(X \theta_{0}\right)^{T} y+y^{T} \psi$
θ is what we are solving for, to find a minimum for our cost function $J(\theta)$, we need to take the derivitives of $J \mid$ with respect to θ.
$\frac{\partial J}{\partial \theta}=2 X^{T} X \theta=2 X^{T} y=\emptyset$
or
$X^{T} X \theta=X^{T} y$
Multiply both sides by $\left(X^{T} X\right)^{-1}$
$\theta=\left(X^{T} X\right)^{-1} X^{T} y$

In []:

